# Exploring the genomes of elite short-season soybeans in Canada



#### Davoud Torkamaneh and François Belzile



- 1. Definitions
- 2. Can we extensively characterize the nucleotide variation in short-season soybean?

2.1. How many samples need to be sequenced?

- 2.2. Can we create an accurate catalogue of SNPs?
- 3. Can new bioinformatics tools allow us to discover and genotype large structural variants (SVs) in soybean?
  - 3.1 Which types of SVs can we detect?
  - 3.2 At what level of accuracy?



# Types of genetic variation

#### At the nucleotide level

- Single Nucleotide Polymorphism (SNPs)
- Multiple Nucleotide Polymorphism (MNPs)
- Small insertions and deletions (Indels)

#### At the structural level

- Deletions
- Insertions
- Duplications
- Inversions
- Translocations
- CNVs





# **Discovery of genetic variants**

- Can be achieved most extensively through whole-genome sequencing (WGS) of lines that are of interest
  - Selection of lines
  - Library preparation
  - Sequencing
  - Bioinformatics to extract useful information about variants from mountains of sequence data

# How do we select the samples for WGS?

- I. 441 Canadian soybean accessions were genotyped using GBS
- II. A cladogram was constructed using GBS data for 441 accessions
- III. Among these, 102 accessions were selected (arrows) for WGS by selecting accessions residing in each of the major branches of the tree





## NGS library preparation





40,586,700 b



140,587,000 bp

Depth of coverage 11x

- ✓ Illumina HiSeq
- ✓ 127 trillion nucleotides
- ✓ Median depth of coverage 11x

140,586,800 bp

✓ Covering 97.6% of the *G. max* genome sequence (at least one read)

546 bp

140,586,900 bj







# The challenge of NGS data analysis Analytical pipeline



# Comparison of two WGS pipelines

✓ Comparison of our new analytical pipeline (Fast-WGS) with SOAPsnp, the pipeline used in most/all prior WGS in soybean

| Pipeline/Variants | SNPs      | MNPs    | Indels  | Computing time* |
|-------------------|-----------|---------|---------|-----------------|
| Fast-WGS          | 4,071,378 | 284,836 | 642,015 | 81 hours        |
| SOAPsnp           | 4,124,216 | ND      | 512,418 | 261 hours       |

✓ 7% more variants called by Fast-WGS

- ✓ Detection of MNPs by Fast-WGS
- ✓ Fast-WGS runs 3 times faster than SOAPsnp



### Genotype accuracy

OPEN OR ACCESS Freely available online

PLOS ONE

Development and Evaluation of SoySNP50K, a High-Density Genotyping Array for Soybean

Qijian Song<sup>1</sup>, David L. Hyten<sup>1#</sup>, Gaofeng Jia<sup>1</sup>, Charles V. Quigley<sup>1</sup>, Edward W. Fickus<sup>1</sup>, Randall L. Nelson<sup>2</sup>, Perry B. Cregan<sup>1\*</sup>



Davoud Torkamaneh<sup>1,2</sup>, Jérôme Laroche<sup>2</sup>, Aurélie Tardivel<sup>1,2,3</sup>, Louise O'Donoughue<sup>3</sup>, Elroy Cober<sup>4</sup>, Istvan Rajcan<sup>5</sup> and François Belzile<sup>1,2,\*</sup>



Genotype accuracy

Are the genotype calls made through WGS in agreement with the calls made using the SoySNP50K chip at the same nucleotide position in the same accession?





### Genotype accuracy

| Variants/Pipeline | Fast-WGS | Concordance (%) | SOAPsnp | Concordance (%) |
|-------------------|----------|-----------------|---------|-----------------|
| Shared genotypes* | 674,139  |                 | 645,070 |                 |
| Homozygous        | 668,672  | 99.7            | 641,215 | 97.1            |
| Heterozygous      | 3,842    | 98.6            | 2,152   | 91.8            |
| Indels            | 1,625    | 96.1            | 1,703   | 89.5            |

\*Shared genotypes with SoySNP50K dataset

✓ Fast-WGS calls highly accurate variants

✓ Overall high level of accuracy of dataset : ~99.5%



### The problem of missing data!





### Missing data imputation

9% missing data

#### Missing data imputation



14

# Missing data imputation accuracy

Are the imputed genotypes (initially missing data) in agreement with the calls made using the SoySNP50K chip at the same nucleotide position in the same accession?



# Missing data imputation accuracy

| Variants                         | WGS dataset | Imputation accuracy (%) |
|----------------------------------|-------------|-------------------------|
| Number of homozygous genotypes   | 594         | 98.8                    |
| Number of heterozygous genotypes | 41          | 92.7                    |
| Total                            | 635         | 98.6                    |

#### ✓ High level of imputation accuracy

# **SOYA** Is WGS of 102 accessions enough?



- To determine the level of saturation among Canadian soybean, subsets of samples of increasing size were randomly selected and analyzed (N=12, 24, 44, 64, 84, and 102)
- The number of variants discovered did not increase much beyond 80 accessions

✓ SNP catalogue is highly extensive



### Conclusions for nucleotide variation

- ✓ Complete genome sequencing of 102 Canadian short-season soybean
- ✓ ~5 M nucleotide variants
- $\checkmark$  High level of accuracy
- ✓ Extensive capture of SNP and haplotype diversity



#### Exploration and characterization of all types of SVs



SOYA GEN



### Structural variation Exploration and characterization of all types of SVs



#### BreakDancer, CNVnator and LUMPY.

### SOYA Types of SVs and their characteristics

| SV type                            | Number of SV sites   | SV cizo     | Median size | SV site breakpoint |
|------------------------------------|----------------------|-------------|-------------|--------------------|
| s v type                           | Inumber of 5 v sites | 5 V 512E    | of SV (bp)  | precision (bp)     |
| Deletion                           | 63,556               | 10bp-3Mb    | 118         | ±3*                |
| Insertion                          | 16,442               | 32bp-3Mb    | 149         | $\pm 4*$           |
| Duplication (disperse duplication) | 2,865                | 66bp-3Mb    | 2,546       | ±15†               |
| Inversion                          | 3,965                | 33bp-2.8Mb  | 138         | ±12‡               |
| CNV (tandem duplication)           | 1,435                | 500bp-1.5Mb | 5,714       | -                  |
| Translocation (intrachromosomal)   | 3,011                | 30bp-2Mb    | 124         | $\pm 6$            |
| Translocation (interchromosomal)   | 78                   | 11kp-3Mb    | 245,312     | ±35                |

✓ Complete collection of SVs in soybean (all classes)

- ✓ Deletions and insertions constitute largest class of SVs (~86%)
- ✓ Size of SVs ranges from 10bp to 3Mb
- ✓ ~90% of SVs are small (50-300 bp)

### SVs accuracy estimation

Lack of external dataset for comparison (such as CGH array)

#### > Alternative approaches:

- I. Overlap among different tools
- II. Validation using SNP dataset
- III. Experimental validation (PCR and sequencing)



#### How accurate are these SVs?

I. Overlap among different tools





#### How accurate are these SVs?

#### II. Validation using the WGS SNP dataset



#### ✓ High level of concordance for called deletions: $\sim$ 94%



### How accurate are these SVs?

III. Experimental validation (PCR and sequencing)

• 40 SVs representing different types of SV of different sizes



- ✓ 80% (32/40) of concordance between WGS data and PCR results
- ✓ High level of validation using PCR





### Conclusions for structural variation

- ✓ Extensive catalogue of SVs in soybean (all classes)
- ✓ ~92K structural variants
- $\checkmark$  High level of accuracy
- ✓ Extensive capture of SV diversity



# **Overall conclusions**

We sequenced 102 elite soybean lines from Canada, resulting in the most extensive capture of genetic diversity among cultivated accessions from a single country to date.

#### This collection is very important for several reasons:

- i) Representative of short-season soybean germplasm;
- ii) Extensive capture of SNP and haplotype diversity
- iii) First complete collection of structural variants
- iv) Highly accurate collection of nucleotide and structural variants