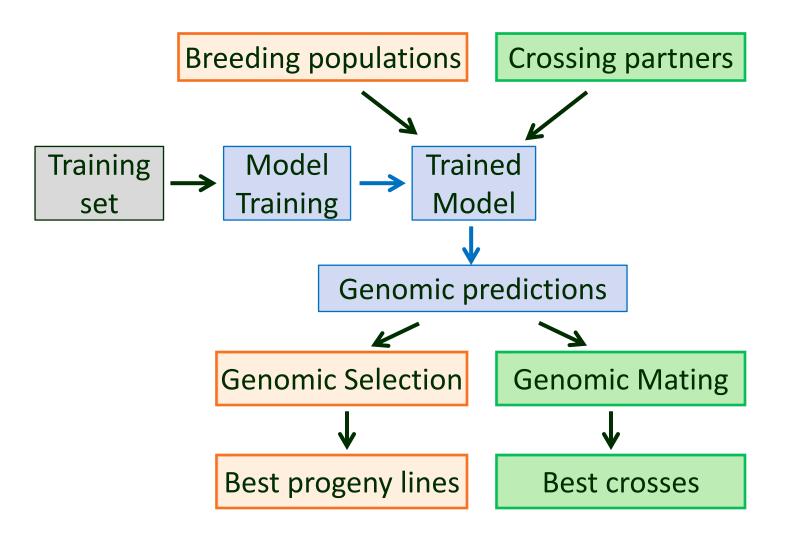
Genomic Mating:

Identifying the most promising crosses

Martine Jean

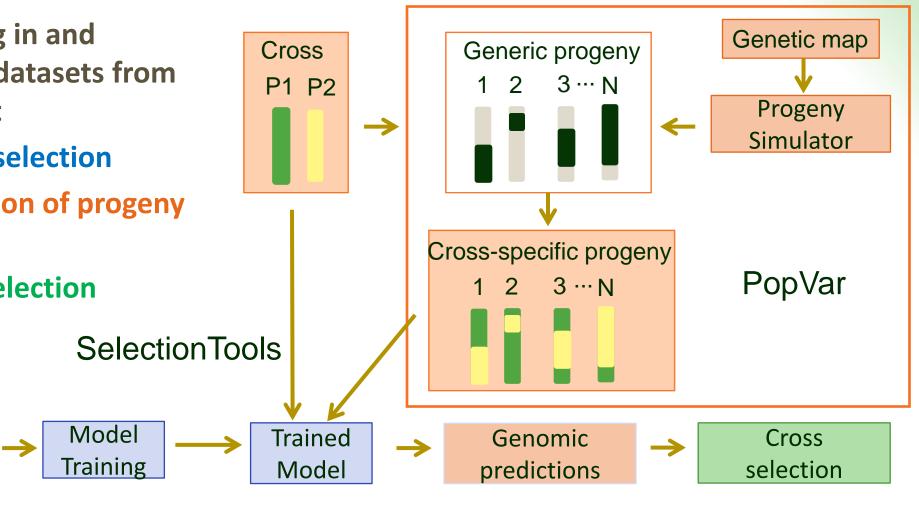
Bioinformatics workshop 4th SoyaGen Annual Meeting, Université Laval, Québec December 6th, 2019

Overview of workshop


- Section 1. Introduction
- Section 2. Getting started with R and RStudio
- Section 3. Data handling with SelectionTools and PopVar
- Section 4. Selecting crosses using conventional approaches with SelectionTools
- Section 5. Genomic Mating: Selecting crosses using genome-wide predictions generated with SelectionTools and PopVar
 - Model training and selection
 - Predicting progeny phenotypes
 - Selecting crosses with SelectionTools
 - Selecting crosses with PopVar

Section 1. Introduction

Genomic predictions can help breeders select breeding lines as well as crosses to perform

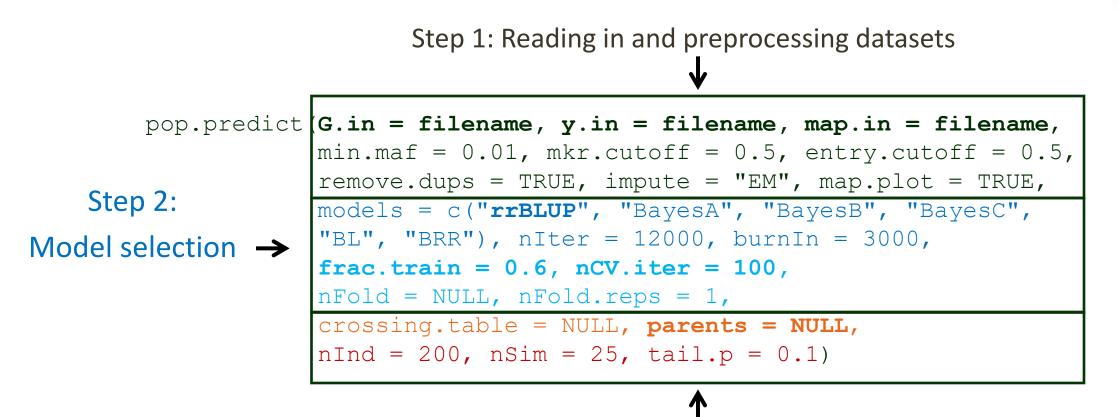

There are 4 main steps in genomic mating

- Step 1: Reading in and preprocessing datasets from the training set
- Step 2: Model selection
- Step 3: Prediction of progeny phenotypes
- Step 4: Cross selection

Training set

Geno + Pheno

datasets



Two R packages are available for genomic mating

	SelectionTools (Osthushenrich et al. 2018 Front. Plant Sci. 9:1899)	PopVar (Mohammadi et al. 2015 Crop Sci. 55:2068-20177)
R package content	Collection of bioinformatic tools	Bioinformatic pipeline
Tools available - Conventional selection - Genome-wide predictions	Yes	No
- Genomic selection	Yes	No
- Genomic mating	Yes	Yes
Statistical approach Calculation speed	Analytical (Models) Fast	Experimental (Simulations) Slow

The heart of the PopVar genomic mating pipeline : the "pop.predict" function

Step 3: Prediction of progeny phenotypes

SelectionTools offers individual functions to perform genomic mating

Step 1: Reading in and preprocessing datasets

st.read.marker.data()
st.read.performance.data()
st.read.map()
st.marker.data.statistics()
st.copy.marker.data()
st.restrict.marker.data()

Step 2: Model selection gs.esteff.rr() gs.esteff.external() gs.predict.genotypes() gs.cross.validation() gs.plot.validation() Step 3: Prediction of progeny phenotypes gs.cross.info() gs.cross.eval.gd() gs.cross.eval.mi() gs.cross.eval.ma() gs.cross.eval.mu() gs.cross.eval.va() gs.cross.eval.va()

Tools for conventional selection

- st.select.phen()
- st.genetic.distances()
- st.plot.ggt()

Section 2. Getting started with R and RStudio

There are many ways to do most basic tasks in RStudio

KStudio File Edit Code View Plots Session Build Image: Studio I	Debug Profile Tools Window Help	 Selecting options in pull- down menus
Untitled1 × Image: Source on Save Image: Source on Save 1	Environment History Connections Import Dataset + Import Dataset + Import Dataset + Global Environment + Import Dataset + Import Dataset +	 Clicking on buttons in panels
1:1 (Top Level) ‡ R Script ‡ Console ~/ ∅ ✓ □	Environment is empty	Running R commands from a script in the
R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale	Files Plots Packages Help Viewer Image: Second state	 Script Editor panel This makes your analyses more reproducible.
<pre>R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.</pre>		 Writing R commands in the Console panel
>		

SOYA GEN

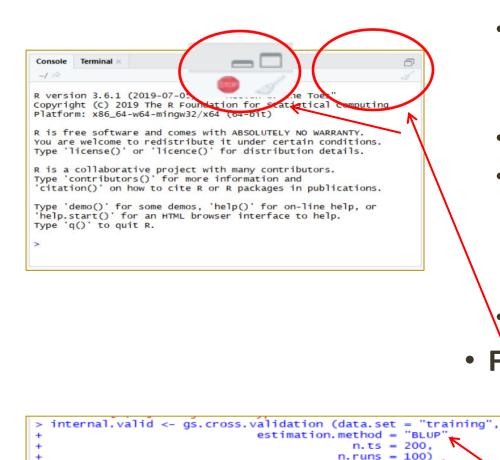
Files	Plots	Packages	Help	Viewer		
()	^ a				Q,	
R: Packag	e Index	• Find in	Горіс			
Pacl	kag	e Inde	x	R)	•
Packa /Librar	y/Fra	meworks			Versions/3 STUVWX	3.6/Resource
askpass assertth				Entry for R	, Git, and SS	SH
backpo	rts	Reimple R-3.0.0	mentati	ions of Fun	ctions Introd	luced Since
and the second se		The P. P. P.				

Console Terminal ×	6
~/ @	
R version 3.6.1 (2019-07-05) "Action of the Toes" Copyright (C) 2019 The R Foundation for Statistical Computi Platform: x86_64-w64-mingw32/x64 (64-bit)	ng
R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions Type 'license()' or 'licence()' for distribution details.	•
R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications	
Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.	
•	

- Use the reference manuals
- Use the Help panel
 - Click on a function name to learn more about it and its options
- Start writing a command in the Console panel
 - RStudio will show the variables and functions starting with those letters
 - Word completion is your friend
 - It helps to avoid spelling mistakes
- Hovering above a command in the Console panel
 - RStudio will show you the available options

Tools	Window	Help	
Insta	ll Packages		
Chec	k for Packa	ge Update	es
Versi	on Control		►
Shell			
Term	inal		
Jobs			•
Addii	ns		•
Keyb	oard Short	cuts Help	て企K
Modi	fy Keyboar	d Shortcut	s
Proje	ct Options.		ሰ ដ ,
Globa	al Options		ж,

	⑦ Configuring Repositorie
Repository (CRAN)	+
Repository (CRAN) Package Archive File (.	tor: tor or)
	tgz; .tar.gz)
PopVar	
Install to Library:	
	framework/Versions/3.6/Resources/libra
Install dependencie	es
	Canada III Connact
	Install Cancel
nstall Packages	
Install from:	
Install from: Package Archive File	(.tgz; .tar.gz)
Package Archive File	(.tgz; .tar.gz)
	(.tgz; .tar.gz)


Install

Cancel

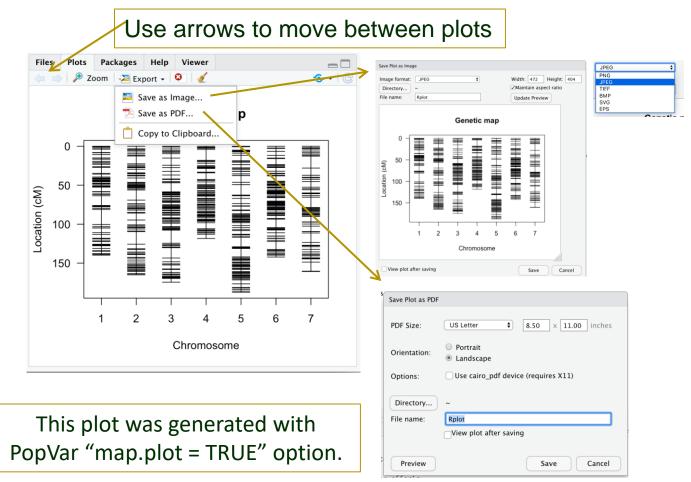
- The PopVar package can be installed directly from the CRAN repository
- The SelectionTools package must first be downloaded as a Package Archive File before being installed :

population-genetics.uni-giessen.de/~software/

The R console is where you execute R commands

• There are many ways to input and run R commands :

- By highlighting them in a script and clicking the "Run" button from the "Script Editor" panel
 - This makes your analyses more reproducible.
- Using the arrow keys to scroll through the previous commands
- Copying and pasting from a text editor
 - Warning: Mac, Windows and Linux word editors use different codes at the end of a line. Some are not recognized correctly by R.
- Writing them directly written in the console


Frequent problems

- Want to know if a command is still running?
 - Check if there is a "stop" button at the top of the panel
- Stuck" in a command (a + symbol is showing on the left) ?
 - Check for unpaired symbols such as ', ", (or [

www.soyagen.ca

Analysis results and plots are not saved automatically

- Many functions output results in a table or list format
 - Results can be viewed in the Viewer or the Console panels.
 - However, when there are many columns, it is usually easier to export tables and use Excel to get an overall view of them.
- Statistics and plots can be easily generated from those results with R commands.
 - The Plot panel can be used to visualize and save/export plots.
 - They can be exported as an image (6 available formats) or in PDF format.

Section 3. Data handling with SelectionTools and PopVar

Reading in options Preprocessing options

- Reading in options
 - Genotypes
 - Phenotypes
 - Map
- Preprocessing options
 - Filtering, subsetting and duplicating
 - Imputing

Reading in datasets

SelectionTools

st.read.marker.data(filename,	st.read.performance.data(in.filename,	st.read.map(filename,
format = "m",	data.set = "default")	format = "mcp"
data.set = "default")		skip = 1,
		data.set = "default")

PopVar

```
pop.predict(G.in = filename, y.in = filename, map.in = filename,
    min.maf = 0.01, mkr.cutoff = 0.5, entry.cutoff = 0.5,
    remove.dups = TRUE, impute = "EM", map.plot = TRUE,
    models = c("rrBLUP", "BayesA", "BayesB", "BayesC",
    "BL", "BRR"), nIter = 12000, burnIn = 3000,
    frac.train = 0.6, nCV.iter = 100,
    nFold = NULL, nFold.reps = 1,
    parents = NULL, crossing.table = NULL,
    nInd = 200, nSim = 25, tail.p = 0.1)
```


Reading in genotypic data with SelectionTools

st.read.marker.data(filename,
format = "m",
data.set = "default")

X4497569	X4313262	X4324242	X4044969
bg00557s0	5 1/1 2/2	1/1 2/2	1/1 1/1 :
bg00645s(3 1/1 3/3	3/3 3/3	1/1 1/1
bg00654s0	3 2/2 2/2	2/2 2/2	2/2 2/2
-	5 3/3 3/3		
bg00958s1	2 1/1 1/1	3/3 1/1	3/3 1/1

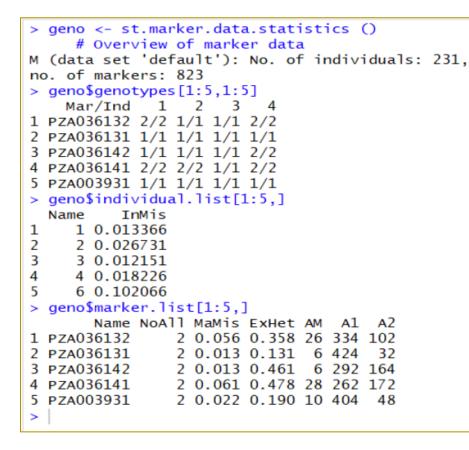
1	2	3	4	5
Gm01:292130	π	CC	CC	Π
Gm01:293822	Π	CC	CC	Π
Gm01:294122	GG	π	π	GG
Gm01:294262	AA	GG	GG	AA
Gm01:378665	GG	CC	CC	GG

• The default file format is the matrix format ("m"):

- First row = individual names
 - No ID for the marker column
- First column = marker names
- Genotype separators = tabs, blanks and ";"
- Three other file formats are accepted :
 - "t" = transposed matrix, "l" = list, "n" = NTSys

• The genotypes must be in diploid format:

- Allele separators = nothing or a slash
- Allele codes = numbers or alphanumeric codes
- Missing value codes = or -1


• Warnings

- Alphanumeric codes are recoded internally as numbers.
- There are no data-imputation options available.

Visualizing genotypic datasets used by SelectionTools requires running a special function

st.marker.data.statistics(filename="marker.stats",

data.set="default")

- Marker data are stored internally in "default" variables.
 - These "default" variables are not displayed in the "Environment" panel.
- To get an overview of the marker dataset, run the st.marker.data.statistics function.
 - It creates 3 variables that can be used by R commands
 - **\$genotypes** = genotypic dataset
 - **\$indivdiual.list** = individual information
 - frequency of missing data for each individual (InMis)
 - **\$marker.list** = marker information
 - number of alleles observed at the marker (NoAll),
 - frequency of missing values for each marker (MaMis)
 - expected heterozygosity (ExHet)
 - count of the observed alleles (A1, A2...)

Many functions alter the hidden "default" variables storing the information about the genotypic dataset

Importing datasets

Step 1. Import genotypic data with the "st.read.marker.data" function

Step 2. Import phenotypic data with the "st.read.performance" function

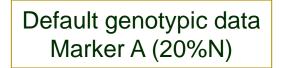
- Warning: In SelectionTools, the genotypic dataset is adjusted according to the content of the phenotypic dataset.
 - If the genotypic dataset contains individuals that don't have a phenotype, they are discarded.
- In PopVar, individuals from the genotypic dataset are kept even if they don't have a phenotype.

It is often hard to keep track of changes made to these hidden "default" variables

Testing different settings of a function (ex. the "MaMis.MAX" option of the "st.restrict.marker.data" function)

Test 1. Testing a relaxed setting for

Default genotypic data Marker A (20%N), B (55%N), C (99%N)



Test 2. Testing a more stringent setting before a more relaxed one

Default genotypic data Marker A (20%N), B (55%N), C (99%N)

Default genotypic data Marker A (20%N)

Best practices when working with SelectionTools

 In the manual, it is highly recommended to reload the datasets between each analysis.

ST-manual, p55 In the subsequent examples we reload the data in several instances. (The code is not yet very robust or error tolerant here.)

- Since it is often hard to keep track of changes to the "default" variables:
 - I highly recommend to use already filtered and imputed genotypic datasets when working with SelectionTools.
 - It is also a good idea to use named datasets when working with the data.set option instead of using the "default" dataset.

data.set = "default" => data.set = "newfilename"

Reading in genotypic datasets with PopVar

PopVar "G.in" option

	G.in_ex ×	y.in_ex ×	map.in	_ex ×	cross.tab_e	x ×				-
	> 2 7	Filter Cols	s: « < 1 -	50 > »					Q	
^	V1 [‡]	V2 [‡]	V3 [‡]	V4 [‡]	V5 [‡]	V6 [‡]	V7 [‡]	V8 [‡]	V9 [‡]	V10 [‡]
1	mkr	11_10895	11_11223	11_21354	11_21067	11_10460	11_10419	11_21174	11_21226	11_10332
2	6B98-9170	1	1	1	1	1	1	1	1	-1
3	COMP351	-1	-1	1	-1	1	1	-1	-1	-1
4	DRUMMOND	1	1	1	1	1	1	1	1	-1
5	FB11-113	-1	-1	1	-1	1	1	-1	-1	-1
6	FEG100-41	-1	-1	-1	-1	1	1	-1	-1	-1
7	FEG100-44	-1	-1	-1	-1	1	1	-1	-1	-1
8	FEG104-63	1	1	1	NA	1	1	-1	-1	-1
9	FEG105-33	1	1	1	1	1	NA	1	1	-1
10	FEG109-44	-1	-1	1	-1	1	-1	1	1	1
11	FEG116-05	1	1	1	1	-1	-1	-1	1	-1
12	FEG116-48	1	1	1	1	-1	-1	-1	1	-1
13	FEG117-24	1	1	1	1	1	1	1	1	-1

• File format:

- First row = marker names
- First column = entry (individual) names

• Genotype format:

- PopVar requires **phased** genotypic data.
- Allele codes:
 - 1: homozygous for minor allele
 - 0: heterozygous
 - -1: homozygous for major allele
 - NA: missing value
 - Warning: NA will automatically be imputed by PopVar using the rrBLUP package.

What is a phased genotypic dataset?

	Original	Major		Minor	Phas	Phased
	Line 1	-1	frequence	1	frequence	Line 1
SNP1	GG	TT	0,75	GG	0,25	1/1
SNP2	CC	GG	0,85	CC	0,15	1/1
SNP3	CC	CC	0,78	TT	0,22	-1/-1
SNP4	AA	GG	0,65	AA	0,35	1/1
SNP5	AC	AA	0,55	CC	0,45	-1/1
					-	

Phasing to allelic frequency

Phasing to parental origin

	Original	P1	P2	Phased	Phased
	Line 1	A or 0	B or 2	Line 1	Line 1
SNP1	GG	GG	TT	A	0
SNP2	CC	CC	GG	A	0
SNP3	CC	TT	CC	В	2
SNP4	AA	GG	AA	В	2
SNP5	AC	AA	CC	н	1

Original Ref

Phasing to a reference genome

Warning: reference genome = genotypes from one line

		Original	Rei	AIL	Flidseu
		Line 1	0	1	Line 1
_	SNP1	GG	GG	TT	0/0
	SNP2	CC	GG	CC	1/1
	SNP3	CC	CC	TT	0/0
	SNP4	AA	GG	AA	1/1
	SNP5	AC	AA	CC	0/1

- In a phased dataset, genotypes are recoded according to a reference.
- Different softwares and analyses may require different references.
 - SNP-calling softwares will score alleles according to a reference genome.
 - Mapping softwares will require alleles to be score according to parental origin.
 - Most genomic prediction softwares will require alleles to be recoded according to their allele frequency in the training set.

Reading in phenotypic datasets

SelectionTools

st.read.performance.data(in.filename, data.set = "default")

PopVar "y.in" option

G.in ex × y.in ex × map.in ex × cross.tab ex ×					
ے بے م	Entry ÷	FHB ÷	DON [‡]	Yield 🍦	Height 🍦
1	6B98-9170	23.536333	29.1	109.63333	76.89250
2	COMP351	NA	NA	NA	NA
3	DRUMMOND	NA	NA	NA	NA
4	FB11-113	23.199667	18.7	79.07500	77.25500
5	FEG100-41	20.984833	21.4	113.07500	81.33000
6	FEG100-44	NA	NA	NA	NA
7	FEG104-63	NA	NA	NA	NA
8	FEG105-33	NA	NA	NA	NA
9	FEG109-44	27.080333	20.4	101.72500	83.63000
10	FEG116-05	18.203333	24.4	94.75000	79.57250
11	FEG116-48	24.536833	23.1	97.35000	78.90500
12	FEG117-24	20.147167	19.4	114.05000	80.85750
13	FEG118-69	NA	NA	NA	NA
Showing 1 to 14 of 245 entries, 5 total columns					

SelectionTools and PopVar accept the same format.

- First row = column names
 - Name should reflect the trait
- First column = entry names
- Additional column (s) = phenotypic data
- However, they have different input data requirements.
 - SelectionTools :
 - Only individuals with a phenotype are allowed.
 - Only one trait is allowed.
 - PopVar :
 - All individuals from the genotypic dataset must be included in the phenotypic dataset, even those without a phenotype.
 - Multiple traits are accepted.

Most prediction models only allow a single value per trait

Trait = Grand mean + Line + Environment + e Year EBV Location Block BLUP/BLUE/True valu Piepho et al. 2008 Euphytica 161:209-228 True valu

SOYA GEN

- Because BLUP involves a shrinkage toward the mean, extreme values may be slightly under- or over-estimated.
- If needed, BLUPs can be "deregressed" to account for this effect.

- The estimated breeding value (EBV) is often used as input for prediction models instead of the raw phenotypes.
 - How to generate EBV will not be demonstrated in the current workshop.
- Using EBV as input means that environmental effects cannot be taken into account by the prediction model.
 - If appropriate datasets are available, prediction models taking into account environmental effects and genotype X environment effects can be used.
 - However, in many cases, predictions made with these more sophisticated models have a similar accuracy to those derived using EBV.
- EBV can be calculated using BLUE (Lines = fixed effects) or BLUP (Lines = random effects).
 - Best linear unbiased **estimations** (BLUE) can be used for multiple environment trials with very little missing data.
 - Best linear unbiased predictions (BLUP) can be used with highly unbalanced datasets like official provincial trials (= tables with high number of missing cells).
 - Both approaches usually give similar prediction accuracy.

Reading in genetic maps with SelectionTools

SelectionTools

st.read.map(filename, format = "mcp" skip = 1, data.set = "default")

name	chrom	pos
PZB008591	1	0.157104
PZA012711	1	1.963154
PZA018701	1	2.693226
PZA018703	1	2.693336
PZA036132	1	2.941215
PZA036131	1	2.94132

PopVar "map.in" option						
G.in_ex × y.in_ex × map.in_ex ×						
	7 🕰 🔇	Filter				
^	mkr 🍦	chr 🍦	pos 🍦			
1	11_10895	1	0.89			
2	11_11223	1	1.24			
3	11_21354	1	1.68			
4	11_21067	1	1.88			
5	11_10460	1	3.21			
6	11_10419	1	4.71			
7	11_21174	1	8.96			
8	11_21226	1	9.37			
9	11_10332	1	11.66			
10	11_10775	1	15.91			
11	11_20749	1	15.91			
12	11_10030	1	17.40			
13	11_20371	1	17.40			
14	11 10873	1	20.33			
Showing 1 to 14 of 742 entries, 3 total columns						

- Both SelectionTools and PopVar can use the « mcp » format.
 - 3 columns = Marker, Chromosome, Position
 - Position unit: cM
- However, they have different header requirements.
 - In PopVar, the first row must contain column names.
 - In SelectionTools, use skip = 1 to remove this row if it is present.
- Other formats are available for SelectionTools.
 - Please see the manual
- If no genetic map is available, a physical map may be converted to an "approximate" genetic map by dividing positions by 100,000.

Using the SoyaGen training set for genomic mating

Genotypic dataset

- The SoyaGen training set genotypic dataset was created with the FastGBS pipeline and filtered using vcftools and Tassel.
 - It can be exported from TASSEL in the diploid format required by SelectionTools.
 - The standard hapmap output from TASSEL can be easily phased and converted to the format required by PopVar using UNIX or R commands.
- Warning. When using real datasets with PopVar, they first need to be read into RStudio with the "read.table" or "read.cvs" command.
 - Set header=FALSE when importing a tab-delimited genotypic dataset file.
 - Set header=TRUE when importing a tab-delimited **phenotypic dataset** or **genetic map** files.

• Phenotypic dataset

 The original multi-environment phenotypic data for the training set was converted to EBV using a BLUP (Yan and Rajcan 2003, Crop Sci. 43:549-555).

• Genetic map

- During most of the SoyaGen project, no genetic maps were available.
 - The physical map was converted to an "approximate" genetic map by dividing positions by 100,000 and used for genomic mating.
- However, a consensus genetic map is now available and could be used in future analyses.

- Read in options
 - Genotypes
 - Phenotypes
 - Map
- Preprocessing options
 - Filtering, subsetting and duplicating
 - Imputing

Preprocessing datasets

SelectionTools genotypic dataset filtration

st.restrict.marker.data(NoAll.MAX = 2, ExHet.MIN = 0.1, MaMis.MAX = 0.1, InMis.MAX = 0.1, data.set = "default")

genotypic dataset subsetting and duplicating

st.restrict.marker.data(ind.list = c(x,y,z), ind.file = filename, mar.list = c(a,b,c), mar.file = filename, data.set = "default")

st.copy.marker.data (target.data.set = "newfile",

source.data.set = "default")

PopVar

www.soyagen.ca

pop.predict
(G.in = filename, y.in = filename, map.in = filename,
min.maf = 0.01, mkr.cutoff = 0.5, entry.cutoff = 0.5,
remove.dups = TRUE, impute = "EM", map.plot = TRUE,
models = c("rrBLUP", "BayesA", "BayesB", "BayesC",
"BL", "BRR"), nIter = 12000, burnIn = 3000,
frac.train = 0.6, nCV.iter = 100,
nFold = NULL, nFold.reps = 1,
parents = NULL, crossing.table = NULL,
nInd = 200, nSim = 25, tail.p = 0.1)
agen.ca

Genotypic dataset filtration options

PopVar
Yes
Yes
Yes
Yes
No
No
Yes

- Warning: there is no maf filtering option in SelectionTools
- However, the expected heterozygosity (ExHet) is also a measure of the allelic diversity
 - It can be used to filter both biallelic and multiallelic markers

• For biallelic markers, ExHet = 0.095 is equal to maf = 0.05

www.soyagen.ca

$$\texttt{ExHet} = 1 - \sum_{a \in \mathcal{A}} f_a^2$$

```
Example of ExHet calculation:
freq A: 0,05; freq T: 0,95
ExHet = 1 - [(0,05*0,05)+(0,95*0,95)]
ExHet = 1 - [0,0025+0,9025]
ExHet = 1 - 0,905
ExHet = 0,095
```

31

Subsetting and duplicating datasets with SelectionTools

st.restrict.marker.data(ind.list = c(x,y,z), ind.file = filename,

mar.list = c(a,b,c), mar.file = filename, data.set = "default")

st.copy.marker.data (target.data.set = "newfile", source.data.set = "default")

- The "st.restrict.marker.data" function can both filter datasets and create subsets.
- This function should mainly be used to create subsets and re-processing them.
 - I highly recommend using already filtered and imputed datasets when working with SelectionTools
- Subsets can be created by selecting individuals (ind) or markers (mar) specified in a list or a file.
- Warning: By default, this function will modify the « default » dataset.
 - If you wish to keep the original dataset intact:
 - make a copy of it under a new name
 - use this name in the « data.set » option

Section 4. Selecting crosses using conventional approaches with SelectionTools

Evaluate crossing partners using known performance Evaluate crossing partners using genetic distances Evaluate crossing partners using allelic composition at specific loci

Selecting crosses using conventional approaches

• A breeder's goal

• Select crosses between elite parents with complementary genetic information that could be combined to generate superior progeny.

• Strategy

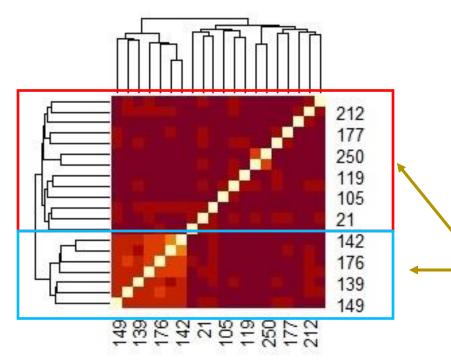
- Step 1. Identify the highest performing lines.
- Step 2. Evaluate their genetic relationship to avoid crosses between highly related lines.
 - These are more likely to carry identical genetic information at critical loci.
- Step 3. Evaluate allele distribution at specific loci in the best lines to favour crosses that will maintain or segregate specific allele combinations.
- SelectionTools can help breeders perform these 3 steps.

Evaluate crossing partners using known performance

best × OsyaGenWorkshop_191						
$\langle \Box \Box \rangle$	🗇 🔿 🖉 🖓 Filter					
^	i °	У	descr 🌼			
150	176	4.927	176 4.927			
118	139	4.721	139 4.721			
68	85	4.612	85 4.612			
148	174	4.577	174 4.577			
98	119	4.391	119 4.391			
121	142	4.223	142 4.223			
128	149	4.172	149 4.172			
96	117	4.082	117 4.082			
36	50	4.050	50 4.050			
8	14	3.986	14 3.986			
10	21	3.960	21 3.960			
109	130	3.872	130 3.872			
122	143	3.808	143 3.808			
182	212	3.740	212 3.740			
151	177	3.714	177 3.714			
85	105	3.673	105 3.673			
222	254	3.652	254 3.652			
218	250	3.632	250 3.632			
188	218	3.631	218 3.631			
32	44	3.612	44 3.612			

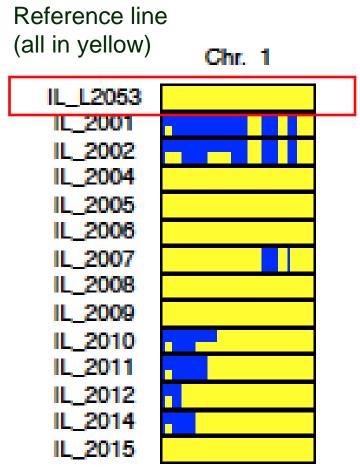
st.select.phen (pheno, n = 20, decreasing = TRUE)

- Step 1. Identify the 20 highest performing lines with the "st.select.phen" function.
 - This function will automatically sort lines by phenotype and create a subset of a specified number of top lines.
 - Options:
 - n = Number of lines to select
 - decreasing = Select lines with the highest (TRUE) or lowest (FALSE) values


Showing 1 to 20 of 20 entries

Evaluate crossing partners using genetic distances

st.genetic.distances(measure = "mrd", format = "l", data.set = "default") dm <- (as.matrix(dist.mat))


heatmap (dm, scale = "none")

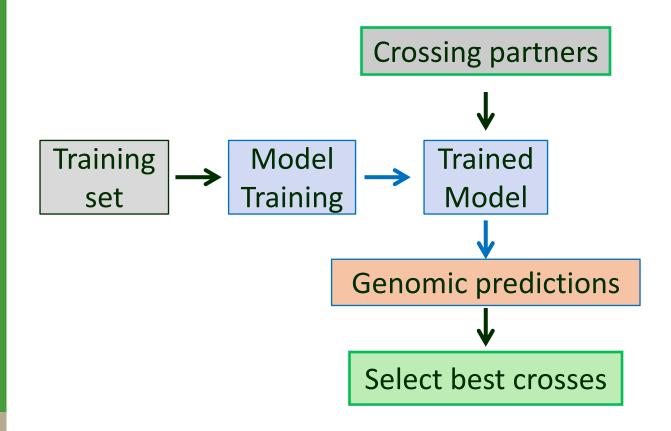
- Step 2. Visualize the genetic relationships of the best 20 lines with a heatmap
 - Step 2.1. Calculate genetic distances between the lines using the "st.genetic.distances" function.
 - Options for measure
 - "mrd" = modified Roger distance, "rd" = Rogers distance and "euc" = Euclidean distance
 - Options for format
 - "I" = long and "m" = matrix
 - Step 2.2. Convert distance matrix to standard R matrix
 - Step 2.3. Create a heatmap using a R command

Crosses should be done between best lines from different clusters to avoid crosses between highly related lines

Compare allele distribution at specific loci in the best lines


```
st.def.hblocks (hap = 1 ,  # number of units
            hap.unit = 1,  # type of units: 0, 1, 2
            data.set = "default",
        st.recode.hbc (reference = 1,
                 data.set = "default" )
        st.plot.ggt(data.set = "default",
                 ifilename = "")
```

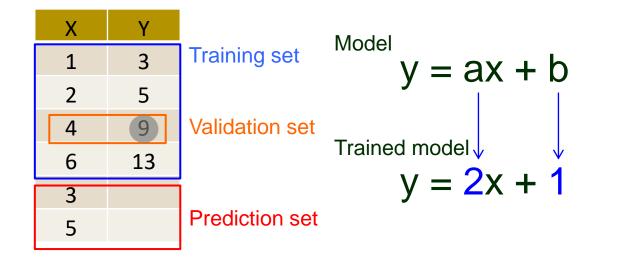
- Step 3. Compare the distribution of alleles at specific loci using graphical genotypes
 - Step 3.1. Define haplotypes using the "st.def.hblocks" function.
 - Step 3.2. Recode the genotypes using the "st.recode.hbc » function.
 - Step 3.3. Plot graphical genotypes using the "st.plot.ggt" function.
 - ifilename = file containing a list of individuals to plot
- Check the manual for further details


SOYA

Section 5. Genomic Mating : Selecting crosses using genome-wide predictions

Model training and selection Predicting progeny phenotypes Selecting crosses with SelectionTools Selecting crosses with PopVar

Main steps in genomic mating



- Step 1: Reading in and preprocessing datasets from the training set
- Step 2: Model selection
- Step 3: Prediction of progeny phenotypes
- Step 4: Cross selection
 - Most of these steps are done automatically with PopVar.
 - With SelectionTools, the user must run these steps manually and sequentially.

Using genome-wide marker effects to predict phenotypes

Using phenotypes and genotypes of training set to estimate allelic effects

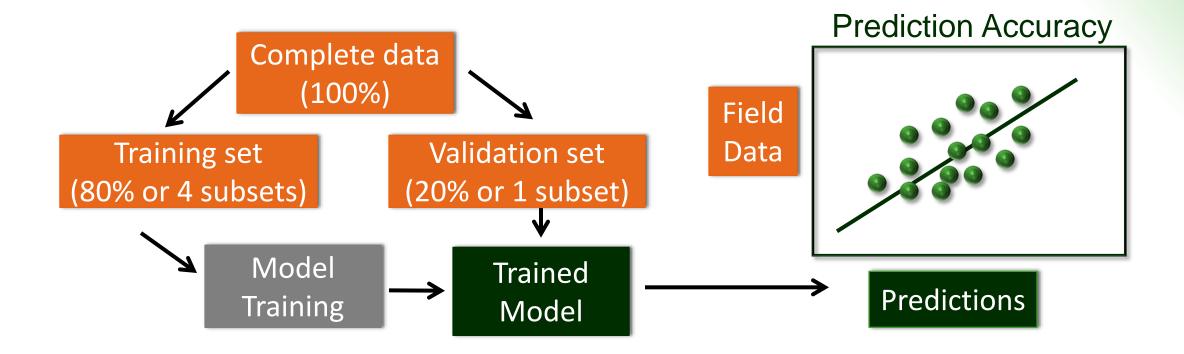
Using allelic effects and overall mean to calculate predicted phenotypes

	Yield	Line 6	B98-9170
mkr	Allelic effect	genotype	genotypic effect
11_10895	0,0348	1	0,0348
11_11223	0,1159	1	0,1159
11_21354	-0,0562	1	-0,0562
-			
11_10174	-0,0357	1	-0,0357
11_20365	-0,0357	1	-0,0357
11_20170	0,0158	1	0,0158
	total ger	notypic effect	15,277
		overall mean	88,294
	Predicted phe	notypic value	103,572

Model training and selection

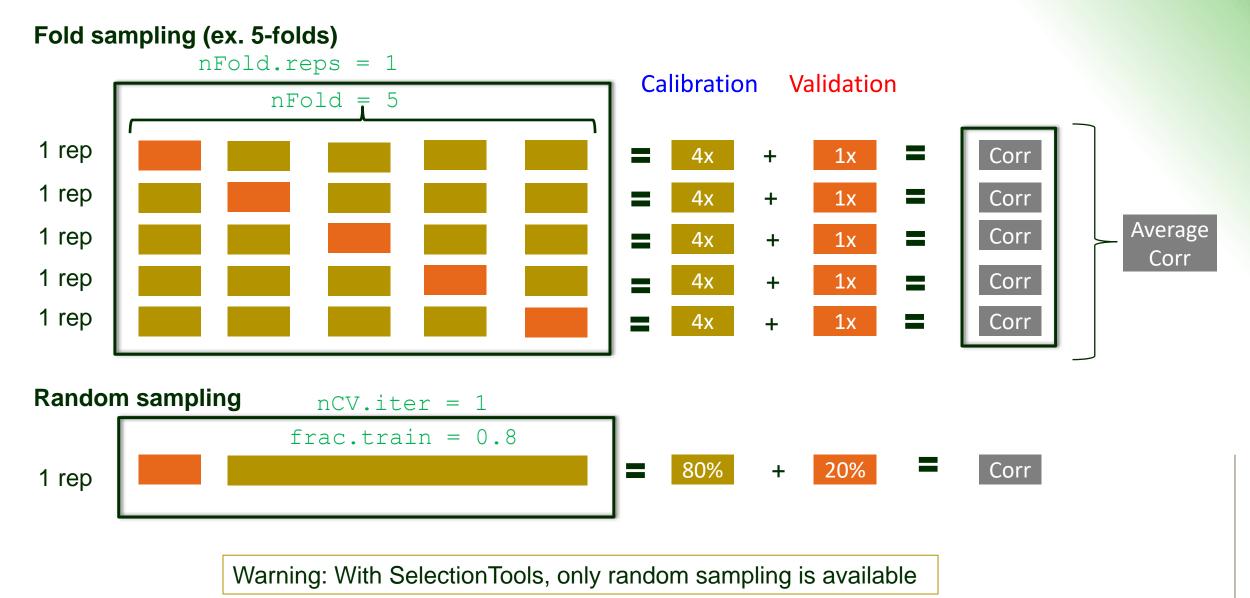
Predicting progeny phenotypes Selecting crosses with SelectionTools Selecting crosses with PopVar

Model selection

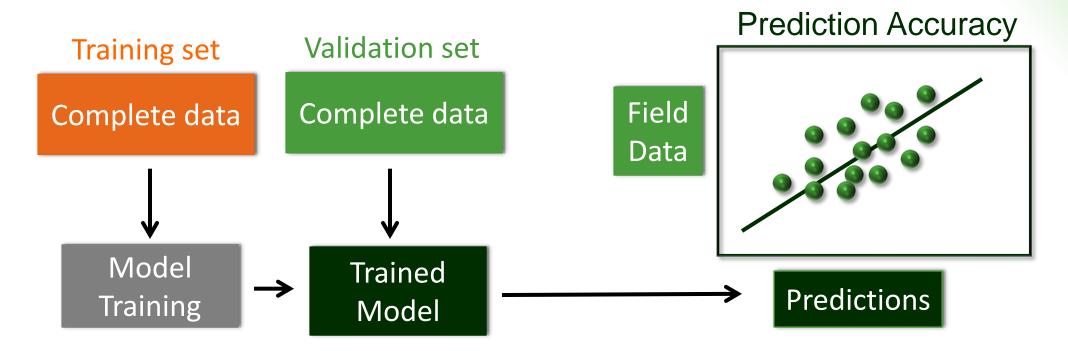

	SelectionTools	PopVar
Models available	rrBLUP, RMLA	rrBLUP, BayesA, BayesB, BayesC, BL, BRR
Prediction accuracy assessment - Cross-Validation		
- random sampling	Yes	Yes
 fold sampling External validation 	No Yes	Yes No
	185	INU
Model selection	Manual	Automatic

• Cross-validation by random sampling or fold sampling?

- Because random sampling is computationally more efficient, it is often used for cross-validation even though fold sampling is, in theory, a statistically better approach.
- The main drawback of random sampling is that some lines may be included in the validation set in more than one rep while others may never be included in it.


Assessing prediction accuracy by internal validation

- Advantage: Accuracy is estimated with already available field data
- Inconvenient: Internal validation usually overestimates accuracy



Cross-validation with PopVar: random vs fold sampling

Assessing prediction accuracy by external validation

- Advantage: External validation sets are usually more similar to the real prediction sets so estimates of prediction accuracy are more reliable
- Inconvenient: Generating good field data for validation sets takes time

Model selection

SelectionTools

Estimating genome-wide marker effects

```
gs.esteff.rr (method = "BLUP",
data.set = "default")
```

```
gs.esteff.external (method = "rrBLUP",
data.set = "t")
```

Assessing prediction accuracy

```
gs.cross.validation (estimation.method,
n.ts, n.runs,
data.set = "default" )
```

gs.plot.validation(estimation.set, validation.set)

PopVar

```
pop.predict (G.in = filename, y.in = filename, map.in = filename,
min.maf = 0.01, mkr.cutoff = 0.5, entry.cutoff = 0.5,
remove.dups = TRUE, impute = "EM", map.plot = TRUE,
models = c("rrBLUP", "BayesA", "BayesB", "BayesC",
"BL", "BRR"), nIter = 12000, burnIn = 3000,
frac.train = 0.6, nCV.iter = 100,
nFold = NULL, nFold.reps = 1,
parents = NULL, crossing.table = NULL,
nInd = 200, nSim = 25, tail.p = 0.1)
```


Model selection with SelectionTools

gs.esteff.rr (method = "BLUP", data.set = "default")

gs.esteff.external (method = "rrBLUP", data.set = "t")

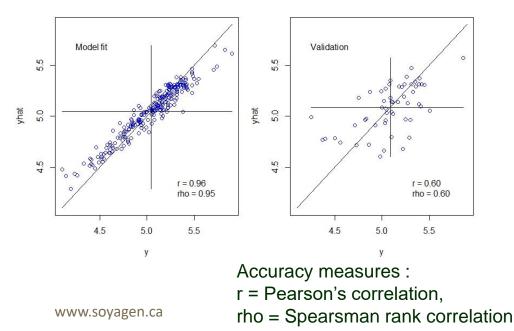
gs.predict.genotypes (training.set = "default", prediction.set = "default")

• Step 1. Estimating genome-wide marker effects

- The gs.esteff.rr function can be used to estimate maker effects with two main models:
 - BLUP (default, = rrBLUP) : constant shrinkage
 - RMLA : marker-specific shrinkage
- SelectionTools can also use models from the R packages rrBLUP (default), regress and sommer.
 - Warning: these packages must be loaded with the R command "library" before being used

• Step 2. Predicting phenotypes of the validation set

- Prediction of phenotypes for the validation set is done automatically when using one of the validation functions
 - The gs.predict.genotypes function can, however, be used to predict phenotypes of genotyped lines manually.
 - This function is used for predicting phenotypes of selection candidates during **genomic selection**.



Model selection with SelectionTools

gs.cross.validation (estimation.method, n.ts, n.runs, data.set = "default")

> summa	ry(internal.valid\$cor)
c	or
Min.	:0.5167
1st Qu	.:0.6275
Median	:0.6770
Mean	:0.6756
3rd Qu	.:0.7387
Max.	:0.8007
>	

gs.plot.validation(estimation.set, validation.set)

• Step 3. Assessing prediction accuracy

- The gs.cross.validation function estimates prediction accuracy by cross-validation.
 - Option:
 - n.ts = number of individuals in the training set (the rest will be the validation set)
 - n.runs: number of replications to run
 - The R function "summary" can be used to visualize the mean prediction accuracy.
- The gs.plot.validation function estimates prediction accuracy by external validation.
 - It automatically creates plots that make it easy to assess prediction accuracy.

• Step 4. Model selection

- There is no function to automatically identify the best model for a given trait.
 - The user must manually test several models, compare their accuracy and select one (usually the most accurate).

48

Model selection with PopVar

```
pop.predict(G.in = filename, y.in = filename, map.in = filename,
            min.maf = 0.01, mkr.cutoff = 0.5, entry.cutoff = 0.5,
            remove.dups = TRUE, impute = "EM", map.plot = TRUE,
            models = c("rrBLUP", "BayesA", "BayesB", "BayesC",
            "BL", "BRR"), nIter = 12000, burnIn = 3000,
            frac.train = 0.6, nCV.iter = 100,
                                                  nlter and burnIn options are used
            nFold = NULL, nFold.reps = 1,
```

nFold : number of subsets (folds) nFold.reps: number of times to repeat folding

ssing.tab

when fitting Bayesian models

25, tail frac.train: fraction of the training set used to train the model (the rest will be used as validation set) nCV.iter: number of iterations (repetitions)

- Model selection is done automatically if the user indicates more than one model in the "models" option.
 - Up to 6 models can be tested.
 - BL = Bayesian LASSO ; BRR = Bayesian ridge regression
 - Accuracy is assessed by two cross-validation methods:
 - **Random sampling** (default) is implemented if nFold = NULL.
 - Fold sampling is implemented when nFold is set to a number. www.soyagen.ca

- The best model is selected automatically.
- Predicted line phenotypes are then calculated automatically for all genotyped lines, even those not in the training set.
 - This is why genotyped lines that have no phenotype can be used as parents by PopVar.

Model training and selection Predicting progeny phenotypes Selecting crosses with SelectionTools Selecting crosses with PopVar

Predicting progeny phenotypes

	SelectionTools	PopVar
Crosses evaluated	All TP lines (with geno+pheno)	All TP lines, all genotyped lines, list of parents, list of crosses
Specialized predictions generated		
- unphenotyped parents	No	Yes
- multiple traits	No	Yes
- correlations between traits	No	Yes

- Because of its simulation approach, PopVar can calculate a larger set of phenotypes for each cross progeny.
- However, a simulation approach is very slow.
 - It took more than a month to generate predictions for the SoyaGen TS on Manitou...
- It is therefore suggested to use a 2-step strategy for cross selection :
 - Step 1. Use SelectionTools to do a first scan of all possible crosses.
 - Step 2. Use PopVar to get a more in-depth evaluation of preselected, targeted, subsets of crosses.

Predicted progeny phenotypes

The fraction of the progeny

GENA	Predicted prog	geny prieno	rypes	to use as superior	
	SelectionTo	ols PopVar		is set by the op "alpha" in Selectio	
Parental genetic distances	gd			and "tail.p" in Po	
Mid-parental values calculated from		midPar.Pheno			-
- observed phenotypes of the parent		midPar.GEBV	mu.sp_low		es o_high
- predicted phenotypes of the paren			low.resp_X		esp_X
Predicted progeny phenotypic values	s mi				
- minimum value	ma				
- maximum value	mu	pred.mu			
- mean		pred.mu_sd			
- standard deviation of the mean	va	pred.varG	-1.96g	95% of values	
- variance		pred.varG_sd	-2.580	99% of values	2.580
- standard deviation of the variance			≈ 0.0013 0.0214 ≈ 0.1359	≈ 0.3413 ≈ 0.3413 ≈ 0.1359 ≈ 0.01	4 = 0.0013
Predicted mean of the expected supe		mu.sp_low	mi	mu	ma
 when favorable values are low values 		mu.sp_high		pred.mu	
- when favorable values are low valu			l F	ored.mu_sd	I
Predicted mean of the expected supe	erior progeny]
for a secondary trait		low.resp_X		Va	
 when favorable values are low values 		high.resp_X		pred.varG	
- when favorable values are low valu		cor_w/_X		ed.varG_sd	
Predicted correlation between prima	ry and		Modified fro	m: nons.wikimedia.org/wiki/l	File
secondary traits www.soyagen.ca				I_Distribution.svg	52

Predicting progeny phenotypes

SelectionTools

```
gs.cross.eval.gd (dist = "rd")
gs.cross.eval.mi ()
gs.cross.eval.ma ()
gs.cross.eval.mu ()
gs.cross.eval.va (pop.type = "DH")
gs.cross.eval.es (alpha = 0.1)
```

PopVar

```
pop.predict(G.in = filename, y.in = filename, map.in = filename,
min.maf = 0.01, mkr.cutoff = 0.5, entry.cutoff = 0.5,
remove.dups = TRUE, impute = "EM", map.plot = TRUE,
models = c("rrBLUP", "BayesA", "BayesB", "BayesC",
"BL", "BRR"), nIter = 12000, burnIn = 3000,
frac.train = 0.6, nCV.iter = 100,
nFold = NULL, nFold.reps = 1,
parents = NULL, crossing.table = NULL,
nInd = 200, nSim = 25, tail.p = 0.1)
```


Predicting progeny phenotypes with SelectionTools

- SelectionTools automatically tests all possible combinations of lines from the training set.
 - There is no way to test only a subset of crosses of interest.
- All progeny phenotypes are calculated separately.
 - It calculates the phenotype of a genotype predicted to carry all bad (mi) or good (ma) alleles.
 - Models for two population types (DH: double haploids, SSD: single seed descents) are available to predict variances.

Predicting progeny phenotypes with PopVar

Fo	rmat	of th	e	list	0	f cross	es
	cross	.tab_ex ×	у.	in_ex ×		map.in_ex ×	
		🔊 🛛 🏹 Fi	lte	er			
	^	Par1	÷	Par2	÷		
	1	MN97-31		FEG27-9	96		
	2	M113		FEG26-5	50		
	3	FEG16-30		MN97-5	7		
	4	FEG17-02		M110			
	5	FEG18-27		MN97-1	6		
							-

pop.predict (G.in = filename, y.in = filename, map.in = filename, min.maf = 0.01, mkr.cutoff = 0.5, entry.cutoff = 0.5, remove.dups = TRUE, impute = "EM", map.plot = TRUE, models = c("rrBLUP", "BayesA", "BayesB", "BayesC", "BL", "BRR"), nIter = 12000, burnIn = 3000, frac.train = 0.6, nCV.iter = 100, nFold = NULL, nFold.reps = 1, parents = NULL, crossing.table = filename, nInd = 200, nSim = 25, tail.p = 0.1)

• Target cross options

- parents : Testing all combination of a parental list
 - Parental list options
 - NULL (default) (= all Geno lines)
 - TP (training pop) (= Geno+Pheno)
 - User-defined list of parental lines
- Crossing.table : Testing only a user-defined list of crosses

Progeny simulation

- Progeny simulations are performed using the R/qtl package
 - nInd: number of individual to simulate
 - nSim : number of simulation to run

Model training and selection Predicting progeny phenotypes Selecting crosses with SelectionTools Selecting crosses with PopVar

Running the various functions used to predict progeny phenotypic values

• Warning. Marker effects must have been calculated before using those functions.

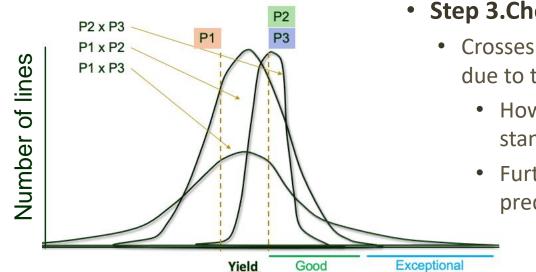
Visualizing the predictions and selecting the best 10 crosses

Use sortby = "	index"						
to sort by	#						
# P1No P2No P1Na	ame P2Name	gd	mu	mi	ma	va	es
#1 266 276 2	266 276	0.42	4266.05	-4260.45	11025.74	68932.58	4537.81
#2 42 276	42 276	0.41	4288.79	-4125.54	10936.44	52187.59	4525.25
#3 190 276 3	190 276	0.23	4293.00	-3276.64	10124.74	48752.68	4521.55
#4 190 266 3	190 266	0.39	4227.41	-4310.18	11018.08	80618.84	4521.30
#5 96 276	96 276	0.37	4270.28	-4058.58	10846.81	58451.10	4520.53
#6 149 276 3	149 276	0.39	4270.87	-4064.18	10788.31	57660.64	4519.42
#7 130 276 3	130 276	0.34	4292.45	-3792.54	10575.09	47353.10	4517.70
#8 42 190	42 190	0.38	4250.15	-4070.77	10855.29	58389.19	4500.27
		0.41	4226.86	-4181.74	10934.53	68919.68	4498.60
#10 82 276					10834.50		
Parents	Parent						
Falents	raicin						
order in	names						
the input			ala tha				
1			ple, the				
file	line "n	ames	" were				
	increas	sing nu	umbers.				

gs.cross.info (bestn = 10, sortby = "mu", data.set = "default")

 This function will sort crosses according to the predicted phenotypes specified by the "sortby" option and will automatically create a subset of the size specified by the "bestn" option.

Visualizing the predictions and selecting the best 10 crosses


#	P1No	P2No	P1Name	P2Name	gd	mu	mi	ma	va	es
#1	266	276	266	276	0.42	4266.05	-4260.45	11025.74	68932.58	4537.81
#2	42	276	42	276	0.41	4288.79	-4125.54	10936.44	52187.59	4525.25
#3	190	276	190	276	0.23	4293.00	-3276.64	10124.74	48752.68	4521.55
#4	190	266	190	266	0.39	4227.41	-4310.18	11018.08	80618.84	4521.30
#5	96	276	96	276	0.37	4270.28	-4058.58	10846.81	58451.10	4520.53
#6	149	276	149	276	0.39	4270.87	-4064.18	10788.31	57660.64	4519.42
#7	130	276	130	276	0.34	4292.45	-3792.54	10575.09	47353.10	4517.70
#8	42	190	42	190	0.38	4250.15	-4070.77	10855.29	58389.19	4500.27
#9	130	266	130	266	0.41	4226.86	-4181.74	10934.53	68919.68	4498.60
#10	82	276	82	276	0.38	4256.85	-4108.88	10834.50	53785.40	4496.90

- Step 1. Identify the best crosses based on progeny means (mu).
- Step 2. Check the genetic distance (gd) between the parents of these crosses and avoid crosses with very small genetic distances.
 - Warning. When crosses are selected by highest progeny mean, a small number of lines are found to be used repeatedly as parents of the best crosses (= lines with the highest trait values).
 - Care should be taken to avoid a reduction in genetic diversity.

Visualizing the predictions and selecting the best 10 crosses

#	P1No	P2No	P1Name	P2Name	gd	mu	mi	ma	va	es
#1	266	276	266	276	0.42	4266.05	-4260.45	11025.74	68932.58	4537.81
#2	42	276	42	276	0.41	4288.79	-4125.54	10936.44	52187.59	4525.25
#3	190	276	190	276	0.23	4293.00	-3276.64	10124.74	48752.68	4521.55
#4	190	266	190	266	0.39	4227.41	-4310.18	11018.08	80618.84	4521.30
#5	96	276	96	276	0.37	4270.28	-4058.58	10846.81	58451.10	4520.53
#6	149	276	149	276	0.39	4270.87	-4064.18	10788.31	57660.64	4519.42
#7	130	276	130	276	0.34	4292.45	-3792.54	10575.09	47353.10	4517.70
#8	42	190	42	190	0.38	4250.15	-4070.77	10855.29	58389.19	4500.27
#9	130	266	130	266	0.41	4226.86	-4181.74	10934.53	68919.68	4498.60
#10	82	276	82	276	0.38	4256.85	-4108.88	10834.50	53785.40	4496.90

- Step 3.Check the predicted variance (va) of the best crosses.
 - Crosses with high progeny variance may contain exceptional lines due to transgressive segregation.
 - However, screening a larger number of progeny than a standard trial size may be needed to find them.
 - Furthermore, the variance is the hardest progeny trait to predict and its accuracy would need to be validated.

Model training and selection Predicting progeny phenotypes Selecting crosses with SelectionTools Selecting crosses with PopVar

Running the pop.predict function

Console ~/Desktop/SoyaGen2019/TestPopVar191123/ > ex1.out <- pop.predict(G.in = G.in_ex, y.in = y.in_ex, map.in = map.in_ex,</pre> crossing.table = cross.tab_ex, nSim=5, nCV.iter=10) [1] Number of Markers Read in: 742 [1] "A.mat converging:" [17] 0.00484 Warnings about 'closing unused connections' AND 'Error in rinvGauss' can be safely disregarde d... They are dealt with internally Selecting best model via cross validation for FHB and estimating marker effects Error in rinvGauss(n = ETA[[j]]\$p, nu = nu, lambda = ETA[[j]]\$lambda2) : nu must be positive Warning in .Internal(gc(verbose, reset, full)) : closing unused connection 6 (/Users/mjean/Desktop/SoyaGen2019/TestPopVar191123(ETA_1_lambda.da t) Warning in .Internal(gc(verbose, reset, full)) : closing unused connection 5 (/Users/mjean/Desktop/SoyaGen2019/TestPopVar191123/vare dat) Warning in .Internal(gc(verbose, reset, full)) : closing unused connection 4 (/Users/mjean/Desktop/SoyaGen2019/TestPopVar191123/mu.dat) Selecting best model via cross validation for DON and estimating marker effects Selecting best model via cross validation for Yield and estimating marker effects Selecting best model via cross validation for Height and estimating marker effects Cross validation is complete! Brewing 5 populations of 200 individuals for each cross... Please be patient -----1 100% >

- Warning 1. Error messages are often output by PopVar
 - According to the authors, they can be be safely disregarded.
 - However, carefully read them to detect possible "true" ones...
- Warning 2. Runtime can grow significantly when using large values for some options such as nCV.iter and nSim.
 - Smaller values can be used for tests but larger values such as the default values should always be used in real analyses.

Warnings about 'closing unused connections' AND 'Error in rinvGauss' can be safely disregarde d... They are dealt with internally

Visualizing the results of the various steps that were automatically carried out by PopVar

	ributes	Q. (
ame	Туре	Value			
ex1.out	list [5]	List of length 5			
predictions	list [4]	List of length 4			
CVs	list [4]	List of length 4			
FHB	list [6 x 3] (S3: data.frame)	A data.frame with 6 rows and 3 columns			
O DON	list [6 x 3] (S3: data.frame)	A data.frame with 6 rows and 3 columns			
Vield	list [6 x 3] (S3: data.frame)	A data.frame with 6 rows and 3 colum			
Height	list [6 x 3] (S3: data.frame)	A data.frame with 6 rows and 3 columns			
models.chosen	character [4]	'BL' 'BL' 'BRR' 'BRR'			
FHB	character [1]	'BL'			
DON	character [1]	'BL'			
Yield	character [1]	'BRR'			
Height	character [1]	'BRR'			
markers.removed	NULL	Pairlist of length 0			
entries.removed	character [1]	'MN97-95'			

- Preprocessing results
 - markers.removed : List of markers removed during filtering for MAF and missing data.
 - entries.removed : List of entries removed during filtering for missing data and duplicate entries.
- Model selection results
 - models.chosen : List of the statistical model chosen for each trait.
 - **CVs** : CV results for each trait/model combination specified.
 - Can be exported to disk in text format to be imported in Excel

Visualizing the model selection results

	А	В	С	D	E	F	G	Н	I	J	К	L
1	FHB.Model	FHB.r_avg	FHB.r_sd	DON.Model	DON.r_avg	DON.r_sd	Yield.Model	Yield.r_avg	Yield.r_sd	Height.Model	Height.r_avg	Height.r_sd
2	rrBLUP	0,588	0,077	rrBLUP	0,660	0,050	rrBLUP	0,355	0,098	rrBLUP	0,756	0,052
3	BayesA	0,591	0,075	BayesA	0,661	0,051	BayesA	0,346	0,107	BayesA	0,761	0,051
4	BayesB	0,590	0,074	BayesB	0,648	0,055	BayesB	0,336	0,102	BayesB	0,753	0,053
5	BayesC	0,587	0,075	BayesC	0,652	0,056	BayesC	0,343	0,096	BayesC	0,753	0,054
6	BL	0,596	0,075	BL	0,664	0,052	BL	0,352	0,107	BL	0,760	0,051
7	BRR	0,587	0,075	BRR	0,658	0,050	BRR	0,351	0,107	BRR	0,756	0,053

- PopVar automatically tests 6 models that should cover most underlying trait architectures and select the one that achieve the highest accuracy.
 - Major differences in accuracy are observed between traits.
 - These are reproducible differences (low variance).
 - Very small differences in accuracy are observed between models.
 - In theory, the best model for a given trait is related to it genetic architecture.

Visualizing the prediction results

G.in_ex × y.in_ex ×	map.in_ex ×	cross.tab_ex ×	Q ex1.out ×		
🗘 🖒 🗐 🗌 Show Attribut	tes				
Name	Туре	Value			
🗢 ex1.out	list [5]	List of	length 5		
predictions	list [4]	List of	length 4		
FHB_param.df	list [127 x 19]	List of	length 2413		
DON_param.df	list [127 x 19]	List of	of length 2413		
Vield_param.df	list [127 x 19]	length 2413			
Height_param.df	list [127 x 19]	List of	List of length 2413		
CVs	list [4]	List of	length 4		
models.chosen	character [4]	'BL' 'BI	' 'rrBLUP' 'BayesA'		
markers.removed	NULL	Pairlis	t of length 0		
entries.removed	character [1]	'MN97	'MN97-95'		
ex1.out					

• Prediction results

- **predictions** : contains variables storing predictions for each trait for each parental combination specified.
 - They can be accessed with R commands by using the \$ symbol and can be exported in text format to be visualized in Excel.

• Warning:

- There is no function in PopVar to sort crosses according to one of the progeny phenotypes and create subsets of the best crosses.
 - To do so, you need to use standard R commands or export the results and do so in Excel or another software.

Selecting crosses based on mid-parental values

Example: Cross predictions for yield

	А	В	С	D	E	F	G	Н	I	J	0	Р	Q	R	S
1	Par1	Par2	midPar.Pheno	midPar.GEBV	pred.mu	pred.mu_sd	pred.varG	pred.varG_sd	mu.sp_low	mu.sp_high	high.resp_DON	high.resp_Height	cor_w/_FHB	cor_w/_DON	cor_w/_Height
2	M113	FEG26-50	NaN	101,769	101,779	0,098	1,894	0,168	99,371	104,126	26,677	74,624	0,188	0,395	0,137
3	FEG18-27	MN97-16	88,163	98,993	99,005	0,105	3,368	0,212	95,810	102,149	23,904	78,144	0,349	0,495	-0,490
4	FEG20-18	M109	NaN	102,692	102,782	0,153	7,832	0,603	98,084	107,471	24,619	74,718	0,553	0,524	-0,302
5	M114	M116	104,325	99,780	99,765	0,141	5,105	0,547	95,930	103,594	26,345	73,091	-0,370	0,311	0,253
6	FEG26-50	FEG18-27	97,725	100,575	100,558	0,090	3,002	0,296	97,633	103,546	24,312	77,095	0,403	0,572	-0,419
124	FEG188-53	M122	NaN	102,103	102,114	0,106	3,672	0,317	98,960	105,216	21,294	79,200	0,721	0,600	-0,512
125	NEG2-59	FEG175-57	NaN	100,296	100,288	0,175	10,616	1,052	94,825	105,771	23,522	77,653	0,565	0,421	-0,376
126	NEG2-59	FEG183-52	NaN	99,965	99,966	0,166	7,655	0,777	95,223	104,622	24,200	77,491	0,382	0,337	-0,377
127	SEP10-51	FEG154-47	NaN	97,850	97,884	0,186	7,011	0,509	93,335	102,387	25,318	74,355	-0,020	0,070	0,294
128	SEP10-51	FEG183-52	NaN	95,434	95,438	0,138	4,214	0,289	91,950	98,838	24,674	74,218	-0,387	-0,058	0,411

No mid-parental values = one or both parents without phenotype

- midPar.Pheno, midPar.GEBV and pred.mu are basically identical.
 - When phenotypes are available for both parents, midPar.Pheno could be easily calculated by breeders and used in conventional selection.
 - When phenotypes for one or both parents are missing, PopVar could be used to predict this statistics.

Selecting crosses based on superior progeny values

Example: Cross predictions for yield

	А	В	С	D	E	F	G	Н	I	J	0	Р	Q	R	S
1	Par1	Par2	midPar.Pheno	midPar.GEBV	pred.mu	pred.mu_sd	pred.varG	pred.varG_sd	mu.sp_low	mu.sp_high	high.resp_DON	high.resp_Height	cor_w/_FHB	cor_w/_DON	cor_w/_Height
2	M113	FEG26-50	NaN	101,769	101,779	0,098	1,894	0,168	99,371	104,126	26,677	74,624	0,188	0,395	0,137
3	FEG18-27	MN97-16	88,163	98,993	99,005	0,105	3,368	0,212	95,810	102,149	23,904	78,144	0,349	0,495	-0,490
4	FEG20-18	M109	NaN	102,692	102,782	0,153	7,832	0,603	98,084	107,471	24,619	74,718	0,553	0,524	-0,302
5	M114	M116	104,325	99,780	99,765	0,141	5,105	0,547	95,930	103,594	26,345	73,091	-0,370	0,311	0,253
6	FEG26-50	FEG18-27	97,725	100,575	100,558	0,090	3,002	0,296	97,633	103,546	24,312	77,095	0,403	0,572	-0,419
124	FEG188-53	M122	NaN	102,103	102,114	0,106	3,672	0,317	98,960	105,216	21,294	79,200	0,721	0,600	-0,512
125	NEG2-59	FEG175-57	NaN	100,296	100,288	0,175	10,616	1,052	94,825	105,771	23,522	77,653	0,565	0,421	-0,376
126	NEG2-59	FEG183-52	NaN	99,965	99,966	0,166	7,655	0,777	95,223	104,622	24,200	77,491	0,382	0,337	-0,377
127	SEP10-51	FEG154-47	NaN	97,850	97,884	0,186	7,011	0,509	93,335	102,387	25,318	74,355	-0,020	0,070	0,294
128	SEP10-51	FEG183-52	NaN	95,434	95,438	0,138	4,214	0,289	91,950	98,838	24,674	74,218	-0,387	-0,058	0,411

- The superior progeny mean correspond to the mean value of the subset of lines that will persist through selection.
- When selecting for more than one traits :
 - Step 1. Crosses should be ordered by the mu_sp value of the primary target to identify the best crosses.
 - mu_sp_high should be used when selecting for the highest trait value like yield
 - mu_sp_low should be used when selecting for the lowest trait value like for maturity.

Selecting crosses based on the value of correlated traits in the superior progeny

Example: Cross predictions for yield

SOYA

	•		•		, ,					· high	on with hi	iah roon			
	А	В	С	D	E	F	G	Н	Rule	. nign_:	sp with h	ign.resp	Q	R	S
1	Par1	Par2	midPar.Pheno	midPar.GEBV	pred.mu	pred.mu_sd	pred.varG	pred.varG_sd	mu.sp_low	mu.sp_high	high.resp_DON	high.resp_Height	cor_w/_FHB	cor_w/_DON	cor_w/_Height
2	M113	FEG26-50	NaN	101,769	101,779	0,098	1,894	0,168	99,371	104,126	26,677	74,624	0,188	0,395	0,137
3	FEG18-27	MN97-16	88,163	98,993	99,005	0,105	3,368	0,212	95,810	102,149	23,904	78,144	0,349	0,495	-0,490
4	FEG20-18	M109	NaN	102,692	102,782	0,153	7,832	0,603	98,084	107,471	24,619	74,718	0,553	0,524	-0,302
5	M114	M116	104,325	99,780	99,765	0,141	5,105	0,547	95,930	103,594	26,345	73,091	-0,370	0,311	0,253
6	FEG26-50	FEG18-27	97,725	100,575	100,558	0,090	3,002	0,296	97,633	103,546	24,312	77,095	0,403	0,572	-0,419
124	FEG188-53	M122	NaN	102,103	102,114	0,106	3,672	0,317	98,960	105,216	21,294	79,200	0,721	0,600	-0,512
125	NEG2-59	FEG175-57	NaN	100,296	100,288	0,175	10,616	1,052	94,825	105,771	23,522	77,653	0,565	0,421	-0,376
126	NEG2-59	FEG183-52	NaN	99,965	99,966	0,166	7,655	0,777	95,223	104,622	24,200	77,491	0,382	0,337	-0,377
127	SEP10-51	FEG154-47	NaN	97,850	97,884	0,186	7,011	0,509	93,335	102,387	25,318	74,355	-0,020	0,070	0,294
128	SEP10-51	FEG183-52	NaN	95,434	95,438	0,138	4,214	0,289	91,950	98,838	24,674	74,218	-0,387	-0,058	0,411

 Step 2. The best crosses should then be ordered by the mean value of the correlated secondary target in the superior progeny to identify crosses with progeny improved for both traits.

This step can be repeated as often as needed if there are more than one secondary targets

- Warning. The correlated trait value of the secondary target should be examined in the same slice of the progeny as the main target
 - For example, when **high** yield is the main target with maturity being a secondary target, one would look at the maturity value from the **high**.resp column.
 - By contrast, if **early** maturity is the main target with yield being a secondary target, one would look at the yield value from the **low**.resp column.

Selecting crosses based on the value of correlated traits in the superior progeny

Example: Cross predictions for yield

	А	В	С	D	E	F	G	Н	I	J	0	Р	Q	R	S
1	Par1	Par2	midPar.Pheno	midPar.GEBV	pred.mu	pred.mu_sd	pred.varG	pred.varG_sd	mu.sp_low	mu.sp_high	high.resp_DON	high.resp_Height	cor_w/_FHB	cor_w/_DON	or_w/_Height
2	M113	FEG26-50	NaN	101,769	101,779	0,098	1,894	0,168	99,371	104,126	26,677	74,624	0,188	0,395	0,137
3	FEG18-27	MN97-16	88,163	98,993	99,005	0,105	3,368	0,212	95,810	102,149	23,904	78,144	0,349	0,495	-0,490
4	FEG20-18	M109	NaN	102,692	102,782	0,153	7,832	0,603	98,084	107,471	24,619	74,718	0,553	0,524	-0,302
5	M114	M116	104,325	99,780	99,765	0,141	5,105	0,547	95,930	103,594	26,345	73,091	-0,370	0,311	0,253
6	FEG26-50	FEG18-27	97,725	100,575	100,558	0,090	3,002	0,296	97,633	103,546	24,312	77,095	0,403	0,572	-0,419
124	FEG188-53	M122	NaN	102,103	102,114	0,106	3,672	0,317	98,960	105,216	21,294	79,200	0,721	0,600	-0,512
125	NEG2-59	FEG175-57	NaN	100,296	100,288	0,175	10,616	1,052	94,825	105,771	23,522	77,653	0,565	0,421	-0,376
126	NEG2-59	FEG183-52	NaN	99,965	99,966	0,166	7,655	0,777	95,223	104,622	24,200	77,491	0,382	0,337	-0,377
127	SEP10-51	FEG154-47	NaN	97,850	97,884	0,186	7,011	0,509	93,335	102,387	25,318	74,355	-0,020	0,070	0,294
128	SEP10-51	FEG183-52	NaN	95,434	95,438	0,138	4,214	0,289	91,950	98,838	24,674	74,218	-0,387	-0,058	0,411

- Step 3. Check the predicted correlation between the main and secondary target to identify crosses where the correlation is weaker than usual.
 - It might be easier to break the unfavorable correlation and find individual combining improvement for both traits in these crosses.

Thank you

g **Genome**Canada

GenomeQuébec

g

PRODUCTEURS DE

UNIVERSITY OF SASKATCHEWAN

Agriculture and Agri-Food Canada

saskatchewan pulse Growers

INSTITUT DE BIOLOGIE INTÉGRATIVE ET DES SYSTÈMES

BIS

SEVOTA GENETICS

syngenta

Canadian Field Crop Research Alliance (CFCRA)

www.soyagen.ca

Questions...