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A Systematic Gene-Centric Approach to Define 
Haplotypes and Identify Alleles on the Basis of  
Dense Single Nucleotide Polymorphism Datasets
Aurélie Tardivel, Davoud Torkamaneh, Marc-André Lemay, François Belzile,  
and Louise S. O’Donoughue*

Over the last decade, the affordability and avail-
ability of genome-wide genotyping data of breeding 

lines through approaches such as GBS and microarrays 
has increased significantly, giving rise to new breeding 
approaches such as genomic selection. In parallel, genes 
underlying economic traits are constantly being reported 
and natural variation in these genes contributes to varia-
tion in phenotypes. For such known genes, it is useful to 
assess the allelic diversity captured in genotyped germ-
plasm collections and to identify individuals carrying 
favorable alleles. Some mutations in or near a gene can 
cause a complete loss-of-function, whereas others may 
lead to a partial or leaky phenotype. Moreover, as inde-
pendent mutations occur in distinct genetic backgrounds, 
neighboring quantitative trait loci, genes and alleles could 
be different. Thus two null alleles for the same gene, 

ABSTRACT  Assessing the allelic diversity within a germplasm 
collection and identifying individuals carrying favorable alleles 
is challenging. Advances in high-throughput technologies allow 
the genotyping of many individuals for thousands of markers 
but bridging the gap between single nucleotide polymorphisms 
(SNPs) and relevant alleles remains difficult. We developed a 
systematic approach that defines haplotypes from large SNP 
catalogs that aims to identify haplotypes that can be equated 
to alleles at given genes. Unlike haplotype visualization tools, 
our approach selects SNP markers that flank a gene and define 
haplotypes that correspond to this gene’s alleles. We tested 
this approach on four known soybean [Glycine max (L.) Merr.] 
maturity genes (E1, GmGia, GmPhyA3, and GmPhyA2) in a 
collection of 67 lines and two genotypic datasets [a SNP array 
and genotyping-by-sequencing (GBS)]. For E1, GmGia, and 
GmPhyA3, we identified SNP haplotypes such that the allele 
found at these genes could be accurately predicted from the 
haplotype in 97.3% of the cases. For these genes, of the 12 
known alleles in the collection, 10 and 8 could be correctly 
predicted from the haplotypes found with the SNP array 
and GBS datasets, with success rates of 98 and 97% for all 
allele–line combinations, respectively. The approach proved 
equally successful for data derived from a SNP array and GBS. 
However, in the case of GmPhyA2, a lack of markers in the 
genomic region prevented the identification of alleles, regardless 
of the dataset. We demonstrate the feasibility and reproducibility 
of our approach and identify limits to its applicability.
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core ideas

•	 A gene-centric approach for haplotype definition was 
developed and implemented in R.

•	 The tool allows for allelic characterization at given 
loci in germplasm collections.

•	 Allelic status at four maturity genes is predicted on 
the basis of marker genotyping data.

Abbreviations:  GBS, genotyping-by-sequencing; LD, linkage disequilibrium; 
r2vs, correlation coefficient considering relatedness and population structure; 
SNP, single nucleotide polymorphism; WGS, whole-genome sequencing.
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presumed to be equivalent in terms of their phenotypic 
consequences (e.g., causing a complete loss of function), 
could be strongly linked with different alleles at neighbor-
ing loci. In a breeding context, the introgression of these 
linked alleles in elite material may not be equally useful, 
as undesirable alleles may be transmitted through linkage 
drag (Narvel et al., 2001). In this context, and in addition 
to knowing which individuals carry a favorable allele at a 
given locus, distinguishing between alleles, even favorable 
ones, can be helpful for choosing the best source for a trait 
within the germplasm. Therefore, developing tools that are 
able to extract such information would prove beneficial.

Linkage disequilibrium (LD) between two mark-
ers describes the probability of these markers being 
inherited together more often than would be expected 
by chance. The study of LD is of great interest, as it is a 
key concept for genome-wide association studies, gene 
mapping, or understanding evolutionary processes. The 
level of LD is influenced, among other factors, by selec-
tion, recombination, mutation, population size, and 
genetic drift (Slatkin, 2008). The extent of LD is expected 
to decay proportionally with distance along the chromo-
some and the number of generations over which a com-
bination of alleles has been transmitted. However, the 
distance over which LD decays can vary between species 
and collections of accessions (wild, landrace, and elite) 
(Hyten et al., 2007; Zhou et al., 2015). Similarly, within 
the genome, LD extends over much longer distances 
in pericentromeric regions than in the more gene-rich 
euchromatic regions (Bastien et al., 2014; Zhou et al., 
2015). Linkage disequilibrium also decays much more 
rapidly in recombination hotspots, which are regions 
that exhibit unusually high recombination rates caused 
by unstable molecular structures or the presence of 
recombination initiation sites (Myers et al., 2005, 2008). 
Although markers separated by large physical distances 
(Mb) are expected to behave independently, the occur-
rence of LD between highly distant markers can be 
observed. This phenomenon can underlie bias attribut-
able to various processes such as population structure or 
admixture, epistatic selection, genetic drift, structural 
variation, or genotyping artifacts (Koch et al., 2013).

Various measures of disequilibrium have been pro-
posed, but D’ and r2 are the most commonly used. These 
are based on a common basic pairwise disequilibrium 
coefficient (D) but differ from each other in their consider-
ation of rare alleles (reviewed by Zondervan and Cardon, 
2004). Whereas a value of D’ = 1 (or –1) between two mark-
ers means that the rarer allele at one marker occurs exclu-
sively with one allele at the other marker (and thus there is 
no evidence of recombination), r2 = 1 means that the two 
markers have identical allele frequencies and one allele 
predicts the other (a perfect correlation). More recently, 
an approach has been proposed by Mangin et al. (2012) to 
correct the measure of r2 by considering relatedness (r2

s), 
population structure (r2

v), or both (r2
vs), thus allowing the 

capture of “true” LD as opposed to estimates of LD that are 
biased by population structure and admixture.

For a given gene, a range of alleles can typically be 
found in a large collection. Analyzing LD in a region 
containing a gene of interest could reveal very close 
markers that are not in disequilibrium and distant 
markers that are in disequilibrium. Indeed, a range of 
alleles can exist at a given gene and markers in LD with 
each given mutation can be found in the vicinity of the 
gene. These markers may not be in disequilibrium with 
each other, so the extent of disequilibrium with each 
causal mutation may be different. The maintenance of 
LD between causal mutations and neighboring loci can 
vary depending on the allele frequencies and selection 
pressure. As explained by Sabeti et al. (2002), common 
alleles will typically present a short extent of LD, while 
rare alleles may have short or extended LD. However, 
alleles present at high frequency can maintain an atypi-
cally long range of LD if the LD arose in the gene pool 
through positive selection. In the context of breeding, 
factors like inbreeding and genetic bottlenecks can con-
tribute to long-range LD for such alleles.

Some approaches and software tools have been 
designed to analyze and visualize patterns of LD in 
genetic data through the characterization of haplotype 
blocks. Three approaches have been used to define haplo-
types: (i) the confidence interval approach (Gabriel et al., 
2002), (ii) the four-gamete rule (Wang et al., 2002), and 
(iii) the Solid Spine of LD approach (Barrett et al., 2005). 
The elucidation of haplotype block structure has proven 
useful, for example, in LD analysis, genome-wide associa-
tion studies or redefining intervals around a quantitative 
trait locus (Hwang et al., 2014; Bandillo et al., 2015; Con-
treras-Soto et al., 2017). On the other hand, haplotypes 
for a targeted gene of interest can be defined by selecting 
a block (interval) containing the gene or of several blocks 
surrounding the gene. Because markers in LD with the 
allelic variation at a gene are expected to be near this 
gene, the selection of the closest block(s) will define infor-
mative haplotypes. Depending on the approach and the 
selected parameters, variable results in terms of block def-
inition can be obtained. In our experience, choosing the 
most appropriate method and set of parameters to define 
and select blocks, with the aim of systematically obtain-
ing a good fit between haplotypes and alleles for a given 
gene, is not trivial. Indeed, the three standard approaches 
named above, though relatively efficient at identifying 
haplotypes surrounding the genes of interest, required 
several manual adjustments to the parameters and were 
not systematic and reproducible enough for our needs.

In this study, we have developed a versatile and 
systematic approach to facilitate the process of defining 
informative haplotypes from a set of high-density SNP 
markers. As opposed to the other approaches aimed at 
defining haplotype blocks (by grouping a set of markers 
inherited together on a chromosome scale), the approach 
we describe here is a gene-centric haplotyping process 
that aims to select only the markers near a gene that are 
in LD with this gene. This haplotyping approach has 
a different focus (centered around a gene of interest) 
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and thus allows the identification of a set of SNPs that 
can be used to describe a target gene’s haplotypes in a 
more focused and intuitive way. The objectives of this 
work were to develop a gene-centric haplotyping tool, 
which we called HaplotypeMiner, and to test how well 
this approach can capture the allelic diversity at genes 
of interest located in various regions of the soybean 
genome. We also aimed to assess its potential and limita-
tions when different genotypic datasets are used.

MATERIALS AND METHODS
Plant Materials
A set of 67 Canadian soybean lines, chosen to be repre-
sentative of short-season soybeans and allelic variation at 
four well-known maturity genes (E1, GmGia, GmPhyA3, 
and GmPhyA2), was used to examine and calibrate our 
approach. These lines are a subset of 102 short-season 
Canadian lines that have recently been analyzed via 
whole-genome sequencing (WGS) (Torkamaneh et al., 
2018). From the full collection of 102 lines, we selected 
almost all registered varieties as well as a few advanced 
breeding lines of particular interest, given their maturity 
phenotype. Among these 67 lines, 50 were also in com-
mon with a previously published collection [Set C in Tar-
divel et al. (2014)]. Maturity groups ranged from 000 to II.

Genotyping
Three distinct sets of SNP markers, with physical positions 
based on Assembly 2 of the soybean reference genome 
(Wm82.a2; Schmutz et al., 2010; Song et al., 2016), were 
used in this work: (i) a WGS dataset, (ii) a simulated SNP 
array (SoySNP50K) dataset, and (iii) a GBS dataset. The 
WGS data for the 67 lines were simply extracted from the 
larger catalog of 102 lines for which such data were avail-
able. For the purpose of simulating SNP array data, the 
WGS data were filtered to remove indels, and residual 
heterozygotes were recoded as missing values. Indels and 
heterozygous variants were nevertheless used in the WGS 
dataset for assessing the true alleles, as it is known that 
indels serve as diagnostic variants for some alleles. Finally, 
SNP markers with ³60% missing data were removed. To 
simulate a SNP array dataset, all polymorphic markers in 
the WGS catalog corresponding to nucleotide positions 
interrogated by the SNP array (Song et al., 2013) were 
extracted for the 67 Canadian lines used here. Finally, the 
same collection was genotyped via GBS. DNA extraction, 
preparation, and sequencing of the GBS libraries were 
performed as described by Tardivel et al. (2014). The Fast-
GBS pipeline (Torkamaneh et al., 2017) was used for vari-
ant discovery and the resulting genotypes were filtered as 
described above for the WGS dataset, except that a more 
permissive threshold for missing data was used (£80%), 
given that a more complete set of variants facilitates the 
imputation of GBS data (Torkamaneh and Belzile, 2015). 
Imputation was performed for the GBS catalog only with 
Beagle version 4.0 and the default parameters (Browning 
and Browning, 2007). To prevent the erroneous imputation 

of missing SNPs that were caused by large deletions, we 
inferred the presence of previously published alleles known 
to result from such deletions by analyzing the presence or 
absence of reads at positions known to be captured through 
GBS. Specifically, to test for a 13-kb deletion in the E3 
gene (the e3-tr allele) (Watanabe et al., 2009), we assessed 
depth of coverage at three positions (Gm19:47641476, 
Gm19:47645909, and Gm19:47649947). Similarly, for a 
130-kb deletion in the E1 gene (the e1-nl allele)(Xia et al., 
2012), we measured the depth of coverage at two positions 
(Gm06:20193636 and Gm06:20207387). Individuals with 
no reads mapping to these positions were deemed to carry 
the deletion allele. The GBS variant catalog was then edited 
for each individual carrying one of these two deletions. 
This information was coded as two supplementary “stand-
in” SNP markers on chromosome 06 at position 20,080,746 
and on chromosome 19 at position 47,638,565. One allele 
coded for the deletion; the alternate allele coded for the 
nondeleted version of these genomic regions.

Allelic Characterization Based on WGS
The WGS dataset was used for allelic characterization. 
This characterization was performed by inspecting the 
nonimputed WGS dataset at the known positions of the 
causal mutations reported in the literature (Supplemen-
tal Table S1). Large regions of missing data in the deleted 
genomic regions characteristic of e1-nl and e3-tr were also 
used to define individuals carrying such deletions. As the 
reference genome did not carry the Ty1/copia-like ret-
rotransposon characteristic of the e4(SORE-1) allele in the 
GmPhyA2 gene, the WGS data were not helpful for detect-
ing this insertion. Therefore, all individuals were tested 
for the presence or absence of the ~6.2 kb retrotransposon 
insertion with the primers and polymerase chain reaction 
conditions described by Liu et al. (2008). Finally, data from 
a previous characterization of alleles at the GmPhyA3 gene 
were also used for validation (Tardivel et al., 2014).

Haplotyping Based on the SNP Array and GBS
Haplotyping was performed on both genotypic datasets 
(GBS and the simulated SNP array) by selecting pairs of 
markers flanking the central nucleotide position in the 
four genes of interest and estimated to be in LD with each 
other. Two measures were first used to estimate disequi-
librium between markers: the r2 and the corrected r2

vs 
measure, which takes information about genetic related-
ness and population structure into account. To calculate 
the r2

vs values for all pairwise SNP combinations across 
the chromosome, we used the LDcorSV package (Mangin 
et al., 2012; Desrousseaux et al., 2017). Kinship values 
were estimated via the centered identity-by-state method 
(Endelman and Jannink, 2012) but setting a higher 
threshold for the minor allele frequency (³5%). Popula-
tion structure was estimated with fastSTRUCTURE (Raj 
et al., 2014). After filtering for minor allele count ³ 4, 
SNPs in high LD (r2

vs ³ 0.8) were then grouped into tag 
SNPs to reduce the amount of redundancy. This tagging 
was performed independently on each side of the gene, 
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and the marker closest to the center of the gene was kept 
as the representative tag SNP. For haplotyping, all pairs 
of tag SNPs flanking the central gene position with values 
of r2

vs ³ 0.5 were used. To test the effect of the distance 
parameter, maximum distances of either 250 kb or 1 Mb 
between selected tag SNPs were tested. For each gene, the 
number of tag SNPs retained and the number of haplo-
types generated for each gene were recorded. The size of 
the haplotypes was recorded as the distance between the 
two most distant tag SNPs retained for haplotyping.

To evaluate the accuracy of the diagnostic haplotypes 
for maturity alleles identified in this study, we used a set 
of 32 Plant Introduction lines for which GBS, SNP array 
(Copley et al., 2018), and WGS data (Torkamaneh et al., 
2019) were available. The same set of markers that have 
been predicted to be associated with different haplotypes 
was extracted from GBS and SNP array data of 32 Plant 
Introduction lines and then compared with the WGS 
dataset to assess the accuracy of the predicted alleles.

The haplotyping approach described here was imple-
mented in the R programming language (R Core Team , 
2016) and is publicly available from GitHub as a package 
called HaplotypeMiner (github.com/malemay/Haplotype-
Miner). The package includes functions to perform the 
steps of variant filtering, LD computation, SNP tagging, 
and haplotype enumeration seamlessly in a single func-
tion call. Computation time is usually <1 min for a single 
gene and a typical GBS or SNP array dataset. Parameters 
are customizable for the needs of a particular study and 
a set of graphical functions allows the rapid generation 
of plots and statistics from the output of the analysis. To 
compare HaplotypeMiner with other haplotyping meth-
ods, we also tested how the confidence interval (Gabriel et 
al., 2002), four-gamete rule (Wang et al., 2002), and Solid 
Spine of LD (Barrett et al., 2005) approaches performed 
with our datasets; the associated methods and results can 
be found in Supplemental File S2.

RESULTS
Genotypic Data
A WGS dataset comprising 3406,724 polymorphic SNPs 
was obtained for this collection of 67 soybean lines 
(Table 1). Of the ~60,000 SNPs that could be tested with 
the SNP array, 38,264 were polymorphic within these WGS 
data (with 6.5% missing data). This subset of polymorphic 

WGS-derived SNPs was extracted from the complete WGS 
dataset and used to constitute a simulated array-derived 
catalog of SNPs. From the same collection of lines, 24,048 
polymorphic SNPs were called via a GBS approach. Analy-
sis of read coverage in the GBS dataset detected 39 and 30 
individuals devoid of reads mapping to the genomic inter-
vals corresponding to deletions that characterized the e1-nl 
and e3-tr alleles, respectively. For the simulated SNP array, 
missing data at two SNPs within the E1 locus and one SNP 
in the GmPhyA3 locus were used to diagnose the presence 
of the deletions. The overlap between the simulated array 
data and the GBS data was fairly limited, as only 927 SNP 
markers were in common between them.

Identification of Alleles at Maturity Genes in Each Line
The comparison of variants (SNPs and indels) in the 
WGS dataset with the known causal variants for the vari-
ous alleles at the E1, GmGia, GmPhyA3, and GmPhyA2 
genes allowed us to identify most of the alleles at these 
four genes (Table 2). Individuals carrying the e1-nl and 
e3-tr alleles were characterized by missing data in the 
genomic intervals (~130 kb for the E1 gene and ~13 kb 
for the GmPhyA3 gene) corresponding to the causal 
deletions. For GmPhyA2, a previously unreported 

Table 1. Number of single nucleotide polymorphisms (SNPs) identified via whole-genome sequencing (WGS) and two genotyping tools [a 
simulated SNP array and genotyping-by-sequencing (GBS)] on the four chromosomes carrying maturity genes in a collection of 67 Canadian 
soybean lines. For each method, the number of SNPs remaining at two different minor allele frequency (MAF) thresholds is indicated.

Gm a2.v1 WGS SNP array† GBS
Chromosome MAF ³ 0.01 MAF ³ 0.05 MAF ³ 0.01 MAF ³ 0.05 MAF ³ 0.01 MAF ³ 0.05
Gm06 181,060 148,124 1,818 1,690 1,201 1,013
Gm10 152,913 131,835 1,947 1,749 1,195 975
Gm19 190,295 163,850 2,229 2,006 1,233 1,021
Gm20 148,002 90,071 1,562 1,245 1,197 746
All 3,406,724 2,693,744 38,264 33,152 24,048 18,797
† Simulated array data extracted from the WGS data.

Table 2. Alleles at four maturity genes and their frequency in a 
collection of 67 Canadian soybean lines as defined by whole-
genome sequencing data or molecular validation for the large 
indels of e1-nl, e3tr, and e4 (SORE-1) alleles.

Gene Gene model Allele Count %
E1 Glyma.06g207800 E1 1 1.5

e1-nl 39 58.2
e1-as 25 37.3
e1-fs 2 3.0

GmGia Glyma.10g221500 E2-in 13 19.4
e2-ns 54 80.6

GmPhyA3 Glyma.19g224200 E3Ha 30 44.8
E3Mi 1 1.5

E/e3p.Thr832Ala 2 3.0
e3tr 30 44.8
e3-fs 1 1.5
e3Mo 3 4.5

GmPhyA2 Glyma.20g090000 E4 36 53.7
e4 (SORE-1) 17 25.4
e4p.T832QfsX21 13 19.4

Heterozygote 1 1.5

github.com/malemay/HaplotypeMiner
github.com/malemay/HaplotypeMiner
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single-nucleotide variant at Position 33,239,715 was 
found in the WGS catalog. This variant was found to 
correspond to a 1-bp deletion (A/–) in Exon 2 of the 
GmPhyA2 gene, resulting in a frameshift mutation and 
a premature stop codon (Supplemental Fig. S1). As this 
nonfunctional variant has not been reported previously, 
it is proposed that this allele be named e4p.T832QfsX21. 
Finally, according to polymerase chain reaction, 17 indi-
viduals tested positive for the presence of the Ty1/copia-
like retrotransposon characteristic of the e4(SORE-1) 
allele in the GmPhyA2 gene. The known and new alleles 
described above and their prevalence in this collection of 
lines are shown in Table 2.

Gene-Centric Systematic Haplotyping
Tagging SNPs
Two measures (r2 and r2

vs) were used to estimate disequi-
librium on the filtered set of markers (minor allele count 
³ 4). For r2

vs estimation, we first assessed the population 
structure and relatedness within our collection of lines. 
Each line was assigned by fastSTRUCTURE to one of five 
(GBS dataset) or six (SNP array dataset) subpopulations. 
The relatedness between lines was assessed through an 
identity-by-state matrix calculated for each dataset. The 
difference between these two measures (r2 and r2

vs), for 
the GmPhyA3 gene on two different genotyping datasets 
are illustrated in Fig. 1A, B. This figure shows that r2

vs 

Fig. 1. Estimation of disequilibrium between pairs of markers flanking the GmPhyA3 gene as a function of distance between those marker pairs in 
either genotyping-by-sequencing (GBS) or the simulated single nucleotide polymorphism (SNP) array dataset. (A) r2 between pairs of markers (all 
SNPs) flanking the gene. (B) r2 considering relatedness and population structure (r2vs) between pairs of markers (all SNPs) flanking the gene. (C) r2vs 
between pairs of tag SNPs flanking the gene. The horizontal red line corresponds to the r2 or r2vs threshold used for the selection of flanking pairs.
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resulted in a more accurate view of LD, with fewer pairs 
of markers exhibiting r2

vs values ³ 0.5 than r2. This is 
especially true for distant pairs of SNPs that exhibited 
suspiciously high LD values despite being very far apart.

Tagging was performed to identify and remove SNPs 
that were in high LD (r2

vs ³ 0.8) with each other and thus 
redundant for the purpose of this analysis. Single nucleo-
tide polymorphism tagging was performed independently 
upstream and downstream of each targeted gene. As 
shown in Table 3, after tagging, between 286 and 321 tag 
SNPs were found for the simulated SNP array dataset and 
from 244 to 294 tag SNPs were found in the GBS dataset. 
Although the simulated SNP array dataset harbored a 
significantly higher number of SNPs than the GBS dataset 
(>1.5 times) before tagging (Table 1 and Table 3), it showed 
only a slightly higher number of tag SNPs. Furthermore, 
interestingly, although chromosome 19 showed the high-
est number of SNPs, this chromosome also showed the 
lowest number of tag SNPs. In Fig. 1B, C, comparing the 
LD landscapes for pairs of markers before and after tag-
ging shows that the number of marker pairs flanking the 
GmPhyA3 gene that exceeded the chosen selection thresh-
old LD (r2

vs ³ 0.5) for pairs of tag SNPs was significantly 
reduced after tagging, thus providing a reduction in the 
number of pairs that would be retained for haplotyping.

Defining Haplotypes on the Basis of the Tag SNPs of 
Flanking SNPs
Pairs of tag SNPs flanking each gene were then selected 
with a maximal distance between tag SNPs of either 
250 kb or 1 Mb, as we suspected that this parameter 
may have had a critical influence on the results. For 
each of the four maturity genes, the resulting collection 
of SNPs was used to identify the haplotypes surround-
ing each gene. The number of haplotypes obtained with 
both distances for each of the four genes can be seen in 
Table 4. The sizes of the haplotypes differed among genes 
but were mostly similar for a given gene across the dif-
ferent genotypic datasets. No pair of tag SNPs flanking 
the GmPhyA2 gene was found to be in disequilibrium 

(r2
vs > 0.5) in either dataset and thus no haplotype could 

be described for this gene.
In some cases, increasing the maximum distance 

between tag SNP pairs increased the number of hap-
lotypes obtained; in other cases, this had no impact. 
Indeed, the use of a larger maximum distance (1 Mb) 
between tag SNP pairs significantly increased both the 
number of distinct haplotypes and haplotype length 
for the GmGia gene in both datasets. A difference in 
haplotype length and the number of distinct haplotypes 
was also observed for the GmPhyA3 gene but only in 
the simulated SNP array dataset. Usually, the use of a 
larger distance increased the number of distinct haplo-
types by documenting new low-frequency haplotypes 
(minor allele frequency < 5%). Differences in the num-
ber of SNPs supporting the selected tag SNPs (i.e., all 
SNPs were in high LD with the tag SNPs) were observed 
between the GBS and SNP array datasets. This differ-
ence in SNP coverage was not found to correlate with 
the quality of the defined haplotypes (i.e., the correspon-
dence between haplotypes and alleles).

Correspondence between Haplotypes and Alleles
For each gene, the haplotypes obtained using both the 
SNP array and GBS datasets from our approach were 
compared with the alleles known to be carried by each 
line according to the WGS data (Table 5, Supplemental 
Fig. S2). With the simulated SNP array dataset and by 
using both maximal distances (250 kb or 1 Mb) (Table 4), 

Table 4. Detailed results of the haplotyping approach applied to 
four maturity genes that used a maximal distance between tag single 
nucleotide polymorphisms (SNPs) of either 250 kb or 1 Mb. The table 
shows the number of retained tag SNPs (in linkage disequilibrium with 
at least one other tag SNP on the opposite side of the gene), the 
number of SNPs supporting these tag SNPs, the size of the resulting 
haplotype block (distance between the two farthest tag SNPs), the 
total number of distinct haplotypes for both genotyping datasets, and 
the number of rare haplotypes (frequency < 0.05).

 
Dataset

 
Gene

 
Distance

Tag 
SNPs

Supporting 
SNPs

Size of  
haplotype block

Haplo-
types

Rare haplo-
types < 5%

bp
SNP 
array

E1 250 kb 3 12 209,669 4 2
1 Mb 3 12 209,669 4 2

GmGia 250 kb 4 55 388,835 4 1
1 Mb 7 70 1,223,653 9 6

GmPhyA3 250 kb 6 17 243,307 7 4
1 Mb 10 53 406,898 9 6

GmPhyA2 250 kb 0 0 – – –
1 Mb 0 0 – – –

GBS E1 250 kb 2 37 157,787 3 1
1 Mb 2 37 157,787 3 1

GmGia 250 kb 2 6 24,084 2 0
1 Mb 4 9 1,089,481 5 3

GmPhyA3 250 kb 7 23 328,748 7 4
1 Mb 7 23 328,748 7 4

GmPhyA2 250 kb 0 0 – – –
1 Mb 0 0 – – –

Table 3. Number of tag single nucleotide polymorphisms (SNPs) 
retained for four chromosomes after tagging of SNPs in high 
linkage disequilibrium [r2 for relatedness and population structure 
r2vs) ³ 0.8] on each side of the gene under study using either the 
simulated SNP array or genotyping-by-sequencing (GBS).

Gene 
(chromosome) Dataset SNPs† Tag SNPs

E1
(Gm06)

SNP array 1760 320
GBS 1088 294

GmGia
(Gm10)

SNP array 1883 321
GBS 1082 271

GmPhyA3
(Gm19)

SNP array 2170 286
GBS 1119 244

GmPhyA2
(Gm20)

SNP array 1426 308
GBS 945 257

† Number of SNPs used after applying a minor allele count ³ 4 filter.
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four haplotypes were identified for the E1 gene, which 
corresponded perfectly with the four alleles known to 
be present in these lines. With the GBS data, only three 
haplotypes were found by using either maximal distances. 
Two of these haplotypes (B and C) coincided with the 
e1-nl and e1-as alleles, respectively. However, Haplotype A 
grouped three lines carrying either the E1 or e1-fs alleles.

For the GmGia gene (two alleles), the use of a maxi-
mum distance of 250 kb resulted in the definition of four 
different haplotypes with the SNP array dataset. The lines 
known to carry E2-in and e2-ns were each found to be split 
into two haplotypes (one major and one minor). However, 
each of the two haplotypes corresponding to these alleles 
was unique to that allele. With the GBS dataset, two differ-
ent haplotypes were obtained that corresponded perfectly 
with the two alleles (E2-in and e2-ns) present in this col-
lection of lines. However, with both datasets, the use of the 
larger maximal distance (1 Mb) yielded a larger number of 
haplotypes, essentially by splitting haplotypes into several 
subhaplotypes. For example, with the SNP array data-
set, a total of nine haplotypes was observed, six of which 
were present at a very low frequency (<5%). Thus a 1-Mb 
maximal distance did not allow for a better equivalence 
between haplotypes and alleles for this gene.

For the GmPhyA3 gene (six alleles), a short distance 
of 250 kb allowed us to identify seven distinct haplo-
types with both the SNP array and the GBS datasets. The 
results were highly similar for both datasets. Three hap-
lotypes were specific to three of the alleles (E3Ha, E/e3p.
Thr832Ala, and E3Mi), whereas three other haplotypes 
were found to describe individuals sharing the e3-tr 
allele. The seventh haplotype was shared among three 
lines carrying the rare alleles e3Mo and e3-fs. When 
the maximal distance was increased to 1 Mb, the same 

results were obtained with the GBS dataset, whereas the 
SNP array dataset resulted in the definition of additional 
haplotypes that essentially broke down allele-specific 
haplotypes into two subhaplotypes without improved 
resolution of the e3-Mo and e3-fs alleles. Again, expand-
ing the maximal distance between the flanking markers 
to 1 Mb did not improve the correspondence between 
haplotypes and alleles but resulted in the creation of new 
very low frequency haplotypes.

In summary, this approach allowed us to define hap-
lotypes at three of the four genes examined (E1, GmGia, 
and GmPhyA3) and to equate these haplotypes to alleles. 
Overall, 97.3% of  the lines sharing the same haplotype 
were found to share the same allele at a locus. With the 
SNP array dataset, 10 of the 12 alleles known to be present 
in the dataset for those three genes were correctly identi-
fied, resulting in 98% (197 out of 201) of the alleles being 
correctly identified. For the GBS datasets, diagnostic hap-
lotypes were found for 8 of the 12 alleles, with 97% (194 out 
of 201) of the alleles being correctly identified. Indeed, in 
the few cases where accessions with different alleles shared 
the same haplotype, these involved alleles that were present 
at low frequencies. Independent validation using a collec-
tion of unrelated lines (32 Plant Introduction lines) showed 
that with this validation dataset, the haplotypes and mark-
ers performed exactly the same way as with the collection 
of 67 Canadian lines, with the same difficulties in distin-
guishing the e3Mo and e3-fs alleles and, for the GBS data-
set only, the E1 and e1-fs alleles (Supplemental Table S2). 
Diagnostic markers identified in this study and their asso-
ciated linked markers can be found in Supplemental Table 
S3. In the case of one gene (GmPhyA2), a lack of markers in 
high LD prevented the identification of alleles; this result 
was the same with both datasets and shows that for some 
genes, no matter which method is used, haplotyping can-
not be used to derive diagnostic haplotypes.

DISCUSSION
A Systematic Approach for Defining Haplotypes
The selection of pairs of markers flanking the central posi-
tion of a gene, in view of haplotyping, is structured into 
three steps and allows for the setting of four main param-
eters (Fig. 2). The three major steps are: (i) the estimation 
of disequilibrium, (ii) the identification of tag SNPs, and 
(iii) the selection of tag SNP pairs flanking the targeted 
gene. Our approach aims to allow an exploration of the 
haplotype diversity that is present in a collection for a 
given gene. Because it is centered on a gene, our strategy 
differs from previously described methods (the confidence 
intervals, the four-gamete rule, and the Solid Spine of LD), 
which tend to identify and describe blocks of markers on 
a large (chromosomal) scale (Gabriel et al., 2002; Wang 
et al., 2002; Barrett et al., 2005). Moreover, although the 
outputs from alternative approaches (which can be highly 
different from each other) are most often used for other 
purposes (large-scale LD analysis or genome-wide associa-
tion studies), our gene-centric strategy specifically aims to 

Table 5. Correspondence between defined haplotypes and alleles 
known to be carried by 67 soybean lines at three maturity genes using 
a maximal distance of 250 kb in the single nucleotide polymorphism 
(SNP) array and genotyping-by-sequencing (GBS) datasets. 

 
Gene

 
Alleles

SNP array GBS
N Haplotype N Haplotype

E1 E1 1 A 3 A†
e1-fs 2 B
e1-as 25 C 25 B
e1-nl 39 D 39 C

GmGia E2-in 11 A 13 A
2 B

e2-ns 49 C 54 B
5 D

GmPhyA3 E3Ha 30 A 30 A
e3Mo 4 B† 4 B†
e3-fs

E/e3p.Thr832Ala 2 C 2 C
E3Mi 1 D 1 D
e3-tr 26 E 26 E

2 F 2 F
2 G 2 G

† These haplotypes are those that contained more than one allele.
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identify and select a collection of SNPs that are useful for 
defining SNP haplotypes around a target gene.

In this work, we have demonstrated that the concept 
of selecting pairs of markers flanking a gene can lead to 
the accurate identification of haplotypes shared by indi-
viduals carrying the same allele. This strategy was largely 
successful in our collection of 67 inbred Canadian lines 
for three (E1, GmGia, and GmPhyA3) of the four genes 
studied via two different genotyping approaches, with 
an overall accuracy of 97.3%. Although there was only a 
small proportion of common markers between the GBS 
and simulated SNP array catalogs, our haplotype char-
acterization results were equally successful between both 
datasets, indicating that our approach is genotyping-
platform independent. Compared with the three stan-
dard haplotype block-based methods, HaplotypeMiner 
consistently performed similarly or better by decreasing 
the breakdown of individuals carrying the same allele 
into several haplotypes without functional relevance (see 
Supplemental File S2).

Parameter Settings
Several factors can affect the best settings for haplotype 
definition near a given gene; we have therefore allowed 
users to select the desired settings for some parameters: 
(i) the approach used to estimate LD (r2, r2

vs.), (ii) the 
threshold LD value for collapsing SNPs into a single 
tag SNP, (iii) the LD threshold, and (iv) the maximal 
distance between each member of a pair to be selected. 
Indeed, the species or the collection under study, the 
targeted gene, the local LD or density of SNPs, and the 
anticipated number of alleles at a gene are all factors that 
should be taken into consideration to produce the best 
haplotypes for the target region. During the analysis, 
results such as the size of the identified haplotypes, the 
number of haplotypes obtained compared with those 
expected (when known or suspected), and the number of 
very low frequency haplotypes can also guide the user in 
the adjustment of the parameters.

One of the customizable parameters in our approach 
is the selection of either r2 or an alternative measure 
(such as r2

vs, r
2

v,or r2
s) to select pairs of markers flanking 

a gene. In our case, allowing for relatedness and popula-
tion structure in the estimation of LD (r2

vs) was never 
found to reduce the effectiveness of haplotype definition; 
on the contrary, it allowed for a greater reduction in the 
number of tag pairs flanking a gene that were estimated 
to be in LD (r2

vs ³ 0.5) (Fig. 1). We thus chose to use it by 
default. The impact of this correction on the selection of 
tag SNPs for haplotyping was found to vary depending 
on the targeted gene and the distance used [the shorter 
the distance, the less the impact of using r2

vs was visible 
on the resulting haplotypes (data not shown)]. Prior to an 
analysis, the utility of the corrected measure of LD can 
be estimated by verifying the presence of unexpectedly 
high LD at distant loci when plotting the estimated LD 
between pairs of markers flanking the central position 
of the target gene as a function of the physical distance 
between the members of a pair of markers.

Collapsing SNPs in high LD to retain a single tag SNP 
by using a higher threshold (e.g., r2

vs = 1) leads to no loss 
of information from the dataset but has the disadvantage 
of being sensitive to genotyping errors. On the contrary, 
a lower threshold, as was used here (r2

vs = 0.8), will mask 
small genotyping errors or rare recombination events 
but may also lead to the loss of haplotypes specific to rare 
alleles. For example, in the GBS dataset and for the E1 gene, 
the use of a LD threshold of r2

vs = 1 resulted in four dis-
tinct haplotypes instead of three and thereby allowing us 
to distinguish the two rare alleles E1 (N = 1) and e1-fs (N = 
2) (data not shown). In this case only, the use of a higher 
threshold for defining tag SNPs was found to be valuable.

For selecting marker pairs, the higher the criti-
cal threshold of LD (r2

vs threshold) or the smaller the 
distance between markers, the lower the risk of docu-
menting an excessive number of haplotypes, but the 
risk of losing information is greater (the number of 
haplotypes may be lower than expected). Our results 

Fig. 2. Schematic illustration of the process used to identify a set of single nucleotide polymorphisms (SNPs) that can be used to define haplotypes 
near a gene of interest. Three main steps are used: (i) estimating linkage disequilibrium (LD) between SNPs by considering relatedness and population 
structure using the r2 for relatedness and population structure (r2vs), (ii) clustering all SNPs located to one side of the gene that are in high LD with each 
other (r2vs ³ 0.8) and selection of tag SNPs, and (iii) identifying flanking tag SNPs above the chosen r2vs threshold and within a maximum distance.
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showed that in this collection, if a haplotype specific to 
one allele is not detected within a maximum distance 
of 250 kb, the expansion of the interval does not make 
it possible to improve the match between haplotypes 
and alleles. Indeed, compared with 1 Mb, a shorter dis-
tance of 250 kb did not cause any loss of information 
and, in some cases, did not change the number and size 
of the haplotypes. Usually, the use of a greater distance 
between flanking tag SNPs led to an increased number 
of haplotypes but, in general, through the addition of low 
frequency haplotypes (<5%) that had no functional rel-
evance to the alleles under investigation.

Limiting Aspects and Considerations
We successfully identified haplotypes offering a very good 
match with the allelic status at three of the four genes 
under study. For the most part, rare alleles (such as E1 
and e3-fs) proved difficult to capture accurately through 
the identification of a corresponding haplotype. Because 
we only retained SNPs with a minor allele count of ³4, 
obtaining markers specific to rare alleles can be difficult, 
whatever the haplotyping approach. Furthermore, con-
cerning rare alleles, particular caution may be warranted 
if one uses GBS genotyping data, as this may affect the 
accuracy of the imputation step. The detection of haplo-
types also depends on the ability to genotype diagnostic 
markers for a given allele correctly. For example, in the 
case of the GmPhyA3 gene, if a marker specific to the e3Mo 
allele had been present, then e3-fs would not have been 
confused with e3Mo. In our genotyping datasets, these 
two alleles (e3-fs and e3Mo) shared a highly similar hap-
lotype in the vicinity of the gene. No marker in LD with 
e3Mo was found in the SNP array data and only one (but 
distant) was found in the GBS dataset. Because of their 
high similarity, these two alleles were also misidentified in 
Tardivel et al. (2014). The failure to distinguish two alleles 
can also be explained by the history of the appearance of 
an allele. Indeed, if a mutation is recent, the SNP land-
scape around this gene will not have had time to diverge. 
Markers specific to a recent mutation will thus be rare 
and it will prove difficult to capture a distinct haplotype. 
In the case of e3Mo, only resequencing data allowed the 
identification of markers in proximity to and in LD with 
this allele (data not shown). Thus the ability to obtain 
haplotypes that group individuals sharing the same allele 
is dependent on the technical ability to genotype markers 
in disequilibrium with each of the alleles. The ability to 
capture informative markers in the vicinity of the gene is 
dependent on the density of genotyping. For this approach 
to work best, the genotyping should be sufficiently dense 
to deliver at least one marker on each side of the gene that 
is in LD with each allele present at a given gene.

Although we successfully identified haplotypes that 
group individuals sharing the same allele (one haplotype 
= one allele), all individuals sharing a given allele were 
not systematically pooled into one single haplotype (one 
allele ¹ one haplotype). Such alleles with multiple hap-
lotypes were particularly frequent for e3-tr and E2-in. 

Indeed, one interesting aspect of our approach would 
be to document the presence of recombination events 
around a given allele. This information is not exhaustive 
and will vary according to the frequency of the parental 
haplotype and the recombinant haplotype. This infor-
mation could be valuable in a breeding context (e.g., 
selection of parents) to minimize linkage drag with unfa-
vorable linked loci. This aspect can be considered when 
setting parameters for haplotyping.

The inability to detect haplotypes for the GmPhyA2 
gene was intriguing, especially since both the GBS and 
SNP array were equally unsuccessful. On chromosome 
20, no markers in LD with any of the three alleles were 
detected on both sides of the gene. A comparison with 
the resequencing data demonstrated that the inability 
to document markers in LD with the E4 and e4 (SORE-
1) alleles was not only caused by a lack of SNP coverage 
but resulted from an unusual LD landscape around this 
gene (data not shown). Further studies will be needed 
to determine if the LD landscape around the GmphyA2 
gene is specific to this early-maturing Eastern Canadian 
collection. In the case where there are truly no markers 
in LD with the different alleles (recent mutations, double 
recombinations, and recombination hotspots), it will 
prove difficult, if not impossible, to identify informative 
haplotypes, no matter which approach is used.

Breeding aims to produce new lines that carry an 
array of alleles that jointly produce a superior phenotype. 
A key part of this work is to assess the allelic diversity 
present in germplasm collections and to identify individu-
als carrying favorable alleles at these genes. In this work, 
we demonstrate how our approach can provide accurate 
and essential information for breeding by delivering a 
quick and clear picture of the allelic diversity for a gene 
within a given germplasm collection. This approach was 
found to be highly accurate, with an overall success rate 
of 97.3% in terms of grouping individuals sharing the 
same allele into a shared haplotype, thus predicting the 
allele from the haplotype. This approach was also found to 
be reproducible on two distinct genotypic datasets (SNP 
array and GBS) with similar rates of success. Failures were 
also highly concordant and shared across datasets, show-
ing that the observed limitations were attributable to the 
paucity of informative variants in the vicinity of one gene. 
Ultimately, our approach for identification of haplotypes 
from large SNP datasets represents a promising approach 
to routinely assess allelic variation in large collections.

Supplemental Information
Supplementary Table S1. Description of the various 

maturity genes and alleles studied and their expected 
position on genome Gm.a2.v1

Supplementary Table S2.  Maturity gene alleles pres-
ent in a collection of 32 Plant Introduction lines based 
on WGS and prediction of allelic status from SoySNP50k 
array and GBS genotypic data using the markers and 
haplotypes defined in the current study with a collection 
of 67 Canadian lines. 
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Supplementary Table S3. Description of the mark-
ers defining haplotypes and markers linked to them 
(r2

vs > 0.8) for use in marker-assisted selection. 
Supplementary Figure S1. Gene structure of 

the GmPhyA2 gene with (A) the location of the e4p.
T832QfsX21 loss-of-function allele and the five other 
alleles reported to date, (B) alignment of the second exon 
sequence around the 1-bp deletion characteristic of e4p.
T832QfsX21, and (C) the frameshift mutation specific to 
e4p.T832QfsX21, resulting in a premature stop codon

Supplementary Figure S2. Detailed haplotypes 
obtained for the E1 (a and b), GmGia (c and d), and 
GmPhyA3 (e and f) genes obtained with both the simulated 
SoySNP50K (a, c, and d) and GBS (b, d, and f) datasets. 

Supplementary File 2. Comparison of Haplotype-
Miner to other haplotyping approaches
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