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Summary
Here, we describe a worldwide haplotype map for soybean (GmHapMap) constructed using

whole-genome sequence data for 1007 Glycine max accessions and yielding 14.9 million variants

as well as 4.3 M tag single-nucleotide polymorphisms (SNPs). When sampling random subsets of

these accessions, the number of variants and tag SNPs plateaued beyond approximately 800 and

600 accessions, respectively. This suggests extensive coverage of diversity within the cultivated

soybean. GmHapMap variants were imputed onto 21 618 previously genotyped accessions with

up to 96% success for common alleles. A local association analysis was performed with the

imputed data using markers located in a 1-Mb region known to contribute to seed oil content

and enabled us to identify a candidate causal SNP residing in the NPC1 gene. We determined

gene-centric haplotypes (407 867 GCHs) for the 55 589 genes and showed that such haplotypes

can help to identify alleles that differ in the resulting phenotype. Finally, we predicted 18 031

putative loss-of-function (LOF) mutations in 10 662 genes and illustrated how such a resource

can be used to explore gene function. The GmHapMap provides a unique worldwide resource

for applied soybean genomics and breeding.

Introduction

Soybean (Glycine max [L.] Merr.) is a unique crop with substantial

economic value. It is the largest plant source of both animal feed

protein and edible oil. It also plays a key role in sustainable

agriculture as it fixes atmospheric nitrogen with the help of

microorganisms (Hungria and Mendes, 2015). Diverse evolution-

ary processes and forces (including cycles of polyploidization and

subsequent diploidization), along with domestication and modern

breeding, have shaped the soybean genome (Schmutz et al.,

2010). The detection of the molecular footprints of these

processes is essential for understanding how genetic diversity is

generated and maintained and for identifying allelic variants

responsible for phenotypic variation (Torkamaneh et al., 2018).

The global production of soybean has increased substantially in

recent years (Ray et al., 2013), but the rate of annual yield gains

(without considering symbiotic nitrogen fixation) has lagged

behind that of maize (FAOSTAT Database). In addition, with

increased fluctuations in climatic conditions, next-generation

soybean cultivars must not only be higher yielding but also more

resilient to multiple abiotic and biotic stresses (Djanaguiraman

et al., 2019). However, in the main soybean-growing areas of the

world (North and South America), soybean is an introduced crop

and, typically, small numbers of G. max accessions are thought to

have made large contributions to the gene pool of improved

cultivars currently grown in these regions (Gizlice et al., 1994;

Hyten et al., 2006; Maldonado dos Santos et al., 2016).

Continued genetic improvement in soybeans will require a better

understanding of the genetic and especially allelic diversity within

worldwide resources (Qiu et al., 2013).

Decreased whole-genome sequencing (WGS) costs due to the

advent of next-generation sequencing (NGS) technologies has

provided an exceptional opportunity to systematically detect

genetic variants from the entire genomes of numerous individuals
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of the same species (Wang et al., 2018a). In soybean, several

comprehensive descriptions of nucleotide variants, using WGS,

have been achieved within different populations (e.g. China (Fang

et al., 2017; Lam et al., 2010; Zhou et al., 2015), USA (Song et al.,

2017; Valliyodan et al., 2016), Korea (Chung et al., 2014),

Canada (Torkamaneh et al., 2017a) and Brazil (Maldonado dos

Santos et al., 2016)). All these different studies used similar short-

read sequencing technologies, but the variant calling was made

using different bioinformatics pipelines and different versions of

the soybean reference genome. To construct a comprehensive

worldwide catalogue of genetic variants in the form of a

haplotype map, several criteria should be met including: (i)

uniformity of variant calling (single bioinformatics pipeline and

single reference genome), (ii) accuracy (low rate of erroneous

genotype calls) and (iii) extensiveness (representative of the

relevant germplasm).

A comprehensive haplotype map can be used to determine the

common pattern of DNA sequence variation in the genome of a

species of interest by characterizing sequence variants, their

frequencies and the correlation between sequence variants (The

International HapMap Consortium, 2003). A high degree of

correlation known as linkage disequilibrium (LD) and coinheri-

tance of sequence variants create specific genomic blocks called

haplotypes (Pääbo, 2003). Therefore, a subset of representative

sequence variants (known as tag SNPs) is enough to identify the

haplotypes. These tag SNPs can be used to guide the develop-

ment of SNP arrays, perform genome-wide association studies

(GWAS) and determine the underlying alleles (Nicolas et al.,

2006). WGS-derived sequence variants can also be used to build

what is called a Practical Haplotype Graph (PHG) (Jensen et al.,

2020). A PHG captures key haplotypes in a specific collection of

accessions and makes it possible to predict genotypes from low-

coverage sequence data (mapped to the PHG) and to impute

missing genotypes.

Another benefit of such extensive catalogues of existing

genetic variation is to provide tools to better explore gene

function. In addition to the development of model-based

approaches (Kono et al., 2018), prediction tools have made it

possible to identify and classify variants that are likely to alter

gene function and, in extreme cases, lead to loss of function (LOF)

(Cingolani et al., 2012). A comprehensive catalogue of informa-

tive and functionally important variants can accelerate the efforts

to dissect the genetic basis of physiological and agronomic traits

in soybean.

Here, we present a comprehensive haplotype map for Glycine

max (GmHapMap) assembled from DNA resequencing data for a

collection of 1,007 worldwide soybean accessions. We explore

the use of this GmHapMap for (i) imputation of untyped variants

to create high-density genotype data required for gene-level

resolution of genome-wide association studies (GWAS); (ii)

construction of gene-centric haplotypes (GCHs) for the entire

set of soybean genes; and (iii) identification of close to 11 K genes

in which at least one LOF allele has been documented in at least

one of the studied accessions. The GmHapMap provides a unique

resource for translational and functional genomics for the

worldwide soybean community.

Results

Genomic variation in GmHapMap

To establish a comprehensive haplotype map for Glycine max

(GmHapMap), a total of 1007 resequenced soybean accessions

were analysed. These included 727 accessions (representative of

national and regional core collections) that had been sequenced

in previous work and 280 newly sequenced accessions as part of

this study (Data S1). Collectively, these are thought to be

representative of the worldwide cultivated germplasm (Fig-

ure 1a). In total, 165 billion paired-end reads (100–150 bp; total

of 19.2 trillion bp) provided an average depth of coverage of

14 × and these were analysed using a single pipeline (Fast-WGS)

to ensure uniform variant calling. After applying a set of

supervised filters to exclude low-quality variant calls, we identified

14 872 592 nucleotide variants (publicly available at www.SoyBa

se.org) with an average nonsynonymous/synonymous ratio (ω) of
1.49. Of the close to 15 M variants, 3.3 M variants were derived

from the sequencing of 280 accessions newly sequenced in this

work (Figure 1b). GmHapMap includes 12 197 920 single-nu-

cleotide polymorphisms and 801,373 multiple-nucleotide poly-

morphisms (SNPs and MNPs) and 1 873 299 small insertions/
deletions (indels) (−50 bp to +32 bp), mostly (85.6%) located in

non-genic regions. Approximately 45% of variants in GmHapMap

dataset were rare (minor allele frequency (MAF) <5%) (Fig-

ure S1). Missing data comprised less than 8% of the data, and

these were subsequently imputed with high accuracy. In the

resulting dataset, 99.7% of the called or imputed genotypes

matched the genotype indicated for the same SNP and accession

in the SoySNP50K data. The GmHapMap accessions were

grouped into six subpopulations (Figure 1c and Figure S2) with

some admixture and exhibited a consistent level of genetic

diversity (mean of θπ = 1.36 × 10-3) (Figure 1d). This constitutes

an extensive and highly accurate set of foundational data for a

soybean haplotype map.

Extensiveness of GmHapMap

The extensiveness of the GmHapMap was measured based on

nucleotide diversity and haplotype diversity. Previously, the

SoySNP50K array has been used to genotype the entire USDA

soybean germplasm collection (20 087 accessions of G. max and

G. soja; Song et al., 2013). We found that GmHapMap includes

nearly all polymorphisms (99.4%; 31 K) with a MAF > 1%, as

well as ~89% (15 K) of rare SNPs (MAF < 1%) documented

within these G. max accessions. Haplotype diversity (pairwise LD

using both r2 and D0) was calculated for sequence variants, and

the average distance over which LD decayed to 0.2 was ~138 kb

(Figure S3). We identified 4.3 million haplotype-based tag SNPs

and, to determine whether a good level of saturation of both

variants and tag SNPs had been achieved, we randomly selected

subsets of samples of increasing size (n = 100, 200, . . ., and

1007). As illustrated in Figure 2a, the number of variants

discovered did not increase significantly beyond ~800 accessions,

while the number of tag SNPs reached a plateau much faster

(within the first ~600 accessions). Together, these results suggest

that the GmHapMap dataset offers an exhaustive characteriza-

tion of the variants and tag SNPs present in improved soybean

cultivated worldwide.

Large-scale imputation of untyped variants using
GmHapMap

The determination of haplotype phase is important because of its

applications such as the imputation of untyped variants (imputed

sites which are present in the GmHapMap data but absent from

the low-density SNP catalogue). We created two reference

panels: REF-I comprising all SNPs and REF-II containing 1.9 M

haplotype-based tag SNPs that reside in genic regions. Three
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lower density genotype datasets, SoySNP50K (20 087 accessions

genotyped with 43 K SNPs), genotyping-by-sequencing (GBS;

1531 accessions genotyped with 210 K SNPs) and combined GBS/
SoySNP50K (1531 accessions genotyped with 250 K SNPs), were

used for untyped-variant imputation with each of the two

reference panels. In all but one case, the accuracy (concordance

between imputed and known genotypes, see M&M for details)

ranged between 92% and 96% for common variants (allele

Figure 1 DescriptionofGmHapMap.(a)GeographicaldistributionofGmHapMapaccessions.(b)Venndiagramrepresentingthedegreeofoverlapamongvariants

calledusing the twocollectionsof sequencedsoybeanaccessions. (c) Populationstructureanalysisusingall SNPs representingsixdifferentsubpopulations (K = 6) in

the GmHapMap collection. (d) Distribution of genetic diversity among subpopulations of GmHapMap.

Figure 2 (a) Averagenumberofvariants (pink)andtagSNPs(blue)detected inrandomsubsetsofNaccessions(wheren = 100,200etc.).Thisaveragewasderived

from subsampling 20 times. (b) Imputation accuracy as a function of allele frequency for 6 different scenarios; three different experimentally derived genotype

datasets (SoySNP50K, GBS and GBS/SoySNP50K) and two reference panels (REF-I and REF-II).
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frequency (AF) > 0.2) in each dataset, while decreasing gradually

with allele frequency (Figure 2b). In the case of the SoySNP50K

dataset using REF-I, the accuracy of imputed untyped variants

was significantly lower (80–85% for common alleles). Given the

observed variation in the accuracy of imputation using different

reference panels and datasets, we investigated the causes of

erroneous inferred calls. Several characteristics were tied to

inaccurately imputed SNPs: These were commonly rare variants

(low AF), located in short LD blocks (with LD decaying to r2 ≤ 0.2

after only 10 kb, compared to 138 kb genome-wide) or in

genomic regions with structural variants. Furthermore, the initial

marker density in the experimentally derived dataset had a large

impact on imputation accuracy. GBS and SNP array datasets are

two highly complementary marker datasets because most (~90%)

of the SoySNP50K markers are present in genic regions, while

most of the GBS markers (~60%) are present in intergenic regions

(Figures S4 & S5). Therefore, combining GBS and SoySNP50K

datasets increases the density and uniformity of distribution of

SNPs across the genome. The joint use of such commonly

available SNP data increased the level of accuracy of imputation

of untyped variants (Figure 2b).

Impact of Imputation Using GmHapMap on Association
Analysis

Imputation of untyped variants greatly boosts variant density,

allowing fine-mapping studies of loci underlying phenotypic

variation and large-scale meta-analysis. To demonstrate the

benefits of untyped-variant imputation on marker–trait associa-
tion analysis, imputation was performed on a 1 Mb-region

harbouring a QTL previously identified for seed oil content on

chromosome 14. We used the REF-I panel to perform imputation

on an initial dataset of 64 K GBS-derived SNPs (genome-wide)

among 139 soybean lines that had been characterized for their

seed oil content (Sonah et al., 2015). Using this enhanced SNP

catalogue and a mixed linear model (MLM) implementation, we

performed a regional association mapping (Sosso et al., 2015)

and the strongest association (P-value = 6.3 × 10-14 and q-

value < 0.001) was detected with a SNP residing in the

Glyma.14g001500 gene (Figure S6). This gene codes for a

Niemann-Pick C1 (NPC1) protein that has been annotated as a

lipid transporter (SoyBase). Feldman et al. (2015) have docu-

mented that an Arabidopsis mutant of this gene (npc1) exhibits a

58% higher fatty acid content making this gene a likely candidate

contributing to total oil content in soybean. This demonstrates

that the increased number of informative SNP loci, obtained

through the imputation of untyped variants, can prove highly

beneficial in studying the genetic architecture of complex

agronomic traits in soybean.

Gene-centric haplotypes for soybean translational
genomics and breeding

A succession of SNP loci that are in high LD in and around a gene

form a haplotype that can provide a useful guide to the rational

exploration of genetic diversity. In principle, all accessions sharing

the same SNP haplotype in a genic region share the same allele

and the characterization of the phenotypes associated with

different alleles can be facilitated by selecting representative

subsets of accessions that share the same haplotype. We used an

LD-based haplotyping method (HaplotypeMiner) to identify gene-

centric haplotypes (GCHs) for the complete set of soybean genes.

In total, we identified 407,867 GCHs for all soybean genes

(55 589; Data S2). The number of GCHs per gene ranged

between 1 and 43, while averaging ~7 (Figure 3a). Overall,

11 407 genes had more than 10 GCHs with 71% (8082 genes) of

these harbouring 11–15 GCHs. Such genes were typically located

in very short LD blocks with a high degree of nucleotide diversity

(mean θπ = 4.5 × 10−3; Figure 3b). A slight negative correlation

was observed between gene length and the number of GCHs.

However, we found a positive correlation between GCH counts

(number of GCHs) and haplotype size (distance between two

most distant SNPs defining a GCH) (Figure 3c). We also found

2766 genes with a single haplotype, of which 353 were located in

highly conserved genomic regions where no genetic variation

observed in coding regions (Data S3). Such genomic regions

present an exceptionally low (115-fold lower) level of nucleotide

diversity (mean θπ = 6.15 × 10-6) compared to genome-wide

genic regions (mean θπ = 7.1 × 10-4). Gene ontology (GO)

enrichment analysis for these genes showed no significant

enrichment.

An example of GCHs for the GmGIa (Glyma.10g221500) gene

(E2 locus controlling maturity) (Tsubokura et al., 2014), an

orthologue of the arabidopsis GIGANTEA (GI) gene, is presented

in Figure 3d. We found three GCHs for GmGIa, which is

consistent with the number of alleles that have been previously

reported for this gene (Tsubokura et al., 2014). Additional

examples of the correspondence between SNP haplotypes and

functionally defined alleles of soybean genes are presented in

Figure S7. Knowledge of the GCHs (and possibly alleles) in all

soybean genes can greatly facilitate the establishment of a

functional link between the various alleles of a gene and the

associated phenotype.

LOF mutations in GmHapMap

Using SnpEff, a subset of variants located inside the coding

regions were predicted to have a large functional impact. Of

these variants, 18 031 putative loss-of-function (LOF) mutations

are predicted to severely impair protein synthesis or function

through disruption of splicing, introduction of a premature stop

codon, shifts in the coding frame and alterations to the start/stop
codons (MacArthur et al., 2012), and these were identified in a

total of 10 662 genes (19.3% of all soybean genes; Table 1).

These mutations are the result of 5987 SNPs (33.2%), 279 MNPs

(1.5%) and 11 765 indels (65.3%). Frameshift-inducing variants

(10 754) were the predominant category, representing 59.6% of

LOF mutations and affecting 6718 genes. InDels (ranging from

−50 bp to +32 bp) were, understandably, over-represented (4-

fold) in the LOF category due to their high probability of resulting

in a LOF allele. Overall, most of the LOF mutations were present at

low frequency, with 78% having an allele frequency below 10%

(Figure S8). Genes harbouring one or more LOF mutations were

categorized into two groups: unique and multi-copy. We

reasoned that a LOF mutation in a unique gene would necessarily

result in phenotypic consequences. We found that only 706

(6.6%) of genes were single copy, while the remaining 9957

(93.4%) had at least one other copy. This constitutes a significant

enrichment (P < 0.001) compared to the genome-wide occur-

rence of gene duplication. LOF mutations in duplicated genes

could also have functional consequences if the mutated copy was

uniquely expressed as a consequence of neo- or sub-functional-

ization (Roulin et al., 2013). We assessed this by examining

transcriptomic data from 26 tissues (see details in M&M) and

found that 9570 of the 9957 duplicated genes (96%) exhibited a
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unique expression pattern (Data S4 & Figure S9). Thus, despite

the fact that the vast majority of LOF mutations occur in genes for

which there is more than one copy, a large proportion of these

genes exhibit unique expression patterns, thus increasing the

likelihood that a LOF will result in a detectable phenotype.

Application of LOF mutation in soybean functional
genomics and breeding

To assess the quality of this catalogue of mutations, we first

inspected it for genes already known (i.e. functionally validated)

to harbour an LOF mutation. This is indeed the case; all known

genes in the literature were found within the catalogue (Data S5).

Then, we investigated and confirmed the phenotypic impact of

some of these LOF mutations in GmHapMap accessions (Figure 4

and Data S6). A frameshift mutation (frequency = 0.003) in the

microsomal omega-3 fatty acid desaturase (FAD3A), a key gene

for linolenic acid synthesis in soybean seeds (Reinprecht and

Pauls, 2016), was found in three accessions. Near-infrared

spectroscopy (NIRS) analysis of 36 soybean samples (with or

without this LOF mutation) showed a significant (P < 0.001)

decrease in linolenic acid content in the mutant lines (4%)

compared to the wild type (10%) (Figure 4a). A mutation

(f = 0.005) in Glyma.04G050200, the gene underlying the J

locus controlling the Long Juvenile trait (Lu et al., 2017), resulted

in a significant difference (P < 0.002) in grain weight per plant (8

g in the mutant compared to 25 g in the wild type; Figure 4b).

The introduction of a premature stop codon (f = 0.02) due to a

SNP in GmGIa/E2 (Watanabe et al., 2012) significantly

(P < 0.002) reduced the number of days from emergence to

the appearance of the first open flower (DAE) (from 125 in wild-

Figure 3 Description ofGCHs characterized in the GmHapMapdataset. (a) Distribution of the number of genes that have a given number of predicted GCHs. (b)

Distribution of the numberof SNPs residing in a 10-kbwindow in and aroundgenes in soybean according to the number of gene-centric haplotypes (GCHs) defined

usingHaplotypeMiner.(c)Distributionofthemeanlengthofgenesandgene-centrichaplotypes(GCHs)accordingtothenumberofGCHsdefinedbyHaplotypeMiner.

Haplotype length isdefinedasthedistancebetween the tworetainedSNPmarkers that residetoonesideand theother (relative tothemiddleof thegene)andare the

furthest apart fromone another. (d) Schematic representation of predicted GCHs forGmGIa.

Table 1 Number of loss-of-function variants by sequence ontology

(SO)

SO term SNP MNP INS DEL

Total

variants Genes

Splice site-disrupting

(donor)

1270 38 247 205 1760 1640

Splice site-disrupting

(acceptor)

1546 52 207 146 1951 1803

Stop codon-introducing 2826 149 100 7 3082 2418

Frameshift-inducing 0 0 4158 6596 10 754 6718

Start/Stop codon-

disrupting

345 40 54 45 484 452

Total 5987 279 4766 6999 18 031 13 031

Total number of genes affected by LOF variants* 10 662

*Some of the genes were affected with more than one LOF mutation; therefore,

the total number of genes is lower than the sum of the all genes.
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type lines to 95 in the mutant; Figure 4c). Finally, a SNP

(f = 0.009) resulted in the disruption of splicing in the gene

coding for the 3-ketoacyl-ACP synthase II (KASII) enzyme, a key

gene in the oil biosynthesis pathway (Goettel et al., 2016). NIRS

analysis of palmitic acid levels showed a significant (P < 0.04)

decrease in the mutant lines (9%) compared to the wild type

(12%) (Figure 4d). The development of a catalogue of LOF

mutations represents a valuable resource for functional genomics.

Discussion

Using whole-genome sequencing data from a large collection of

1,007 soybean accessions, we developed a haplotype map of

soybean (GmHapMap), a valuable resource for soybean genetic

studies and breeding. A first challenge was to create a uniform

and accurate catalogue of nucleotide variation using a common

version of the reference genome and a single bioinformatics

pipeline (Lek et al., 2016; Roy et al., 2018). The GmHapMap

produced here is not only uniform but also achieved a high level

of genotype accuracy (>99.7%). To create a representative

haplotype map, a good level of saturation of both variants and

haplotypes is required. Close to 15 M sequence variants (SNPs,

MNPs and indels) were called that captured nearly all polymor-

phisms with MAF > 1% in the USDA G. max germplasm collec-

tion (Song et al., 2013). The number of sequence variants did not

increase significantly beyond the first 600 accessions, suggesting

that a collection of this size has succeeded in capturing a sizeable

fraction of worldwide nucleotide variation within cultivated

soybean. Similarly, the number of unique haplotypes (4.3 M tag

SNPs) also plateaued relatively early within this collection of

soybean germplasm. Together, these data suggest that the 15 M

variants captured in GmHapMap are both highly accurate and

comprehensive of the genetic diversity within cultivated soybean

at a worldwide level. GmHapMap brings more resolution to the

within-species diversity of G. max. A lower level of genome-wide

genetic diversity was observed here in soybean (mean

θπ = 1.36 × 10-3) compared to other major crops such as rice

(θπ = 4.0 × 10-3) (Wang et al., 2018a) and corn (θπ = 6.6 × 10-3;

Chia et al., 2012). It is presumed that several genetic bottlenecks,

as well as strong selection pressure, have reduced genetic

Figure 4 Phenotypic variation observed between

accessions with (blue) and without (red) a

predicted LOF mutation in four different genes. (a)

FAD3A, a key gene for linolenic acid synthesis; (b)

GmJ, a key gene of Long Juvenile trait; (c) GmGIa,

a key gene controlling maturity; (d), KASIIa, a key

gene in the oil biosynthesis pathway. In each case,

the number of accessions sharing the same allele

(and for which phenotypic data were at hand) is

indicated.
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diversity in soybean (Hyten et al., 2006). In addition, modern

soybean breeding is founded on a very limited number of the

founder accessions (Hymowitz and Harlan, 1983).

The GmHapMap was used as a reference panel and more than

21 K accessions that had been previously genotyped using

common approaches (SNP array and/or GBS) and obtained an

imputation accuracy of 92%–96% for common variants and

~80% for rare variants. The accuracy levels, obtained here, are

comparable to the 98% reported by Bukowski et al. (2018) in

maize and Wang et al. (2018a) in rice. The success of untyped-

genotype imputation depends critically on how well a reference

panel has captured the relevant haplotype diversity, as well as the

marker density of the experimental dataset (Browning and

Browning, 2016). Here, we document that GmHapMap provides

an extensive capture of SNP and haplotype diversity within

cultivated soybeans worldwide. It is likely that the lower impu-

tation accuracy observed for the SNP array dataset can be

attributed to the relatively low marker density of this dataset.

Enhanced datasets resulting from large-scale imputation can

improve the efficacy of GWAS analysis (Hao et al., 2009;

Marchini and Howie, 2010; Wang et al., 2018b). To illustrate

the benefits of the GmHapMap resource for GWAS, we

performed a local association analysis on soybean seed oil

content using imputed SNPs. A strong association with an

imputed SNP residing in the NPC1 gene was detected, and its

orthologue in Arabidopsis is known to contribute to seed oil

content (Feldman et al., 2015). The nearest significantly

associated GBS-derived variant (i.e. in the absence of the

imputation made possible thanks to the GmHapMap data) was

located 100 kb upstream of this gene and exhibits a relatively

low degree of LD (r2 = 0.5). This shows that an enhanced

dataset, obtained through the imputation of untyped variants,

can improve the power of GWAS analysis. Several studies in

human (Li et al., 2009), cattle (Santana et al., 2014), pig (Yan

et al., 2017), maize (Yang et al., 2014) and rice (Wang et al.,

2018b) have demonstrated the capacity of imputation to

improve the power of GWAS analysis. In the coming years,

we expect that soybean researchers will deploy GmHapMap for

imputation and more precise dissection of the genetic basis of

complex traits in soybean.

This is the first time that a comprehensive description of GCHs,

for the complete set of genes (55 589), has been achieved for a

species. This catalogue of GCHs was obtained using Haplo-

typeMiner (Tardivel et al., 2019). Tardivel et al. (2019) reported

that HaplotypeMiner allowed the identification of SNP haplotypes

for which 97.3% of lines sharing a same haplotype were correctly

identified as having the same allele. It has been well documented

that haplotypes are more informative than single biallelic SNPs

(Stephens et al., 2001). Knowledge of the GCHs (and possibly

alleles) can greatly facilitate the establishment of a functional link

between the various alleles of a gene and the associated

phenotype. Haplotype–phenotype association revealed the func-

tional alleles of several genes in wheat (Jiang et al., 2015), maize

(Yang et al., 2013), rice (Si et al., 2016) and soybean (Langewisch

et al., 2014). Knowledge of the alleles present at one or many

genes can be tremendously important to breeders. Epistatic

interactions between specific alleles and the effects of alleles at

neighbouring loci (carried along via linkage drag) can be very

important when considering which combinations of alleles will be

most desirable to achieve a given phenotype.

A final aspect of this work is that the identification of LOF

mutations in soybean protein-coding genes. GmHapMap includes

a set of nearly 11K knocked-out genes. We suggest that this

catalogue of knocked-out genes is highly advantageous for

soybean functional genomics for investigation of gene function,

and application as genetic makers in soybean breeding programs.

The next challenge will be to link genetic variation, GCHs and

LOFs derived from GmHapMap with agronomic traits. This will

need an extensive effort to measure phenotypes under multiple

field and laboratory conditions. We believe that GmHapMap will

lead and accelerate the soybean breeding efforts and future

sustainable agriculture.

Experimental procedures

GmHapMap sequencing data

Two collections of soybeans were used: (i) a set of 727 accessions

for which whole-genome sequencing had been previously

released for representative diverse accessions (core collection)

for multiple countries (Zhou et al., 2015), Brazil (Maldonado dos

Santos et al., 2016), USA (Valliyodan et al., 2016), China (Fang

et al., 2017), soybean nested association mapping (NAM) parents

(Song et al., 2017) and Canada (Torkamaneh et al., 2017a), and

(ii) a set of 280 accessions which were sequenced as part of this

work. The latter accessions were chosen to provide a more

balanced representation of various soybean-growing areas in the

world. Seeds were planted in individual two-inch pots containing

a single Jiffy peat pellet (Gérard Bourbeau & fils inc. Quebec,

Canada). First trifoliate leaves from 12-day-old plants were

harvested and immediately frozen in liquid nitrogen. Frozen leaf

tissue was ground using a Qiagen TissueLyser. DNA was extracted

from approximately 100 mg of ground tissue using the Qiagen

Plant DNeasy Mini Kit according to the manufacturer’s protocol.

DNA was quantified on a NanoDrop spectrophotometer. Illumina

Paired-End libraries were constructed for 280 accessions using the

KAPA Hyper Prep Kit (Kapa Biosystems, Wilmington, Mas-

sachusetts, USA) following the manufacturer’s instructions

(KR0961 – v5.16). Samples were sequenced on an Illumina HiSeq

X10 platform at the McGill University-Génome Québec Innova-

tion Center in Montreal, QC, Canada.

Identification of nucleotide variants

Sequencing reads from all 1007 accessions were processed using

a single analytical bioinformatics pipeline (Fast-WGS; Torkamaneh

et al., 2017a) to create a uniform catalogue of genetic variants. In

brief, the 100–150-bp paired-end reads were mapped against the

G. max reference genome [Gmax_275 (Wm82.a2)] (Schmutz

et al., 2010). Then, we removed variants if (i) they had more than

two alleles, (ii) an allele was not supported by reads on both

strands, (iii) the overall quality (QUAL) score was <32, (iv) the
mapping quality (MQ) score was <30, (v) read depth (minNR) was

<2 and (vi) the minor allele frequency (MinMAF) was <0.0009.

Determining the accuracy of nucleotide variants

The SoySNP50K iSelect BeadChip has been used to genotype the

entire USDA soybean germplasm collection (Song et al., 2013).

The complete dataset for 20 087 G. max and G. soja accessions

genotyped with 42 508 SNPs was downloaded from SoyBase

(Grant et al., 2010). We extracted the genotype calls at all SNP

loci for which data were available for 420 accessions which were

in common with the GmHapMap collection. This large set of

SoySNP50K genotype calls (~18 M genotypes or data points) was

directly compared with the WGS-derived SNP calls (obtained

using the Fast-WGS pipeline) to assess genotype accuracy.
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Determining the effects of nucleotide variants

The functional impact of nucleotide variants was performed using

SnpEff and SnpSift (Cingolani et al., 2012). To identify LOF

mutations, a database was built using 55 K soybean protein-

coding genes (Gmax_275_Wm82.a2.v1.gene.gff3, from Phyto-

zome on Jan. 2016) for SnpEff. Variants were mapped on to

transcripts annotated as ’protein_coding’ and containing an

annotated ’START’ codon, and then classified as synonymous,

missense and non-sense (stop codon-introducing, start/stop
codon-disrupting or splice site-disrupting (canonical splice sites)).

In this work, we excluded transcripts labelled as NMD (predicted

to be subject to non-sense-mediated mRNA decay). We also

applied a second filtering step, based on annotation, to identify

high-confidence knocked-out genes. The genes with LOF muta-

tions were removed if (i) the ‘REF’ field in the input VCF file did

not match the reference genome, (ii) they had an incomplete

transcript or (iii) they did not have a proper START codon.

Population structure and genetic diversity

Population structure was estimated using variational Bayesian

inference implemented in fastSTRUCTURE (Raj et al., 2014). Five

runs were performed for each number of populations (K) set from

1 to 15. Then, a ChooseK analysis was conducted to determine

the number of subpopulations. A principal component analysis

(PCA) (Jolliffe, 2011) was conducted in PLINK (Purcell et al.,

2007). Total variation per vector (calculated from the 100-

eigenvalue proportion of each vector) was used to generate a

scree plot. A neighbour-joining unrooted phylogenetic tree

(Saitou and Nei, 1987) was constructed in MEGA7 (Kumar

et al., 2016). The taxa were clustered together, and the reliability

of these clusters was assessed by bootstrapping (1000 replicates;

Felsenstein, 1985). All population structure analyses were con-

ducted using complete set of GmHapMap SNPs (12M). We

measured the nucleotide diversity (π) (Nei and Li, 1979) in sliding

windows of 1000 bp across the genome using --window-pi

option of VCFtools (Danecek et al., 2011). Similarly, the pairwise

π was calculated among different subpopulations.

Linkage disequilibrium and tag SNP identification

Genome-wide pairwise linkage disequilibrium (LD) analysis (r2 and

D0) was performed using all nucleotide variants from the

GmHapMap dataset. The average r2 value was calculated for

sliding windows of 1000 bp, and LD decay was calculated using

PopLDdecay (Zhang et al., 2019). For tag SNP selection, we used

PLINK (Purcell et al., 2007) to calculate LD between each pair of

SNPs within a sliding window of 50 SNPs and we removed all but

one SNP that were in perfect LD (LD = 1); the remaining SNPs

were deemed tag SNPs. We then randomly selected subsets of

samples of increasing size (n = 100, 200, . . ., and 1007) and

calculated cumulative number of variants and tag SNPs with 20

iterations.

Imputation of untyped variants

We used two reference panels for untyped-variant imputation.

The ‘REF-I’ panel includes 1,007 accessions from GmHapMap

with the entire SNP dataset, while the ‘REF-II’ panel includes 1007

accessions and only 1.9 M tag SNPs from genic regions (tag SNPs

in genic regions or within 2 kb of a gene). The latter panel (REF-II)

was developed for use in imputing missing loci from SNP datasets

derived from the SoySNP50K array. The SNPs included on this

array are essentially located within genes and do not offer

sufficient coverage of the intergenic regions to make imputation

with the entire set of SNPs (REF-I) reliable. These two reference

panels were created for all 20 chromosomes of soybean and were

phased using BEAGLE v4.1 (Browning and Browning, 2016) with

100 iterations.

As initial lower density datasets, we used three collections of

soybean accessions genotyped with commonly used genotyping

tools. A first set of 20 087 accessions (the entire USDA Soybean

Germplasm Collection) had been characterized using the

SoySNP50K iSelect Bead Chip (Song et al., 2013) to yield a set

of 43 K polymorphic markers. A second set comprised 1531

accessions which had been subjected to genotyping-by-sequenc-

ing (GBS; ApeKI protocol; Sonah et al., 2013) and in which SNPs

had been called using the Fast-GBS pipeline (Torkamaneh et al.,

2017b). Finally, the same set of 1531 accessions (GBS set) was

used, but the original catalogue of GBS-derived SNPs was

complemented with additional SNPs from the SoySNP50K array.

Phasing and imputation were performed using BEAGLE v4.1

(Browning & Browning, 2016) for each chromosome with the

following parameters: (i) nthreads = 10 (number of threads); (ii)

window = 100 000 (number of markers in a sliding window); (iii)

overlap = 50 000 (number of overlapping markers between

adjacent windows); (iv) niterations = 100 (number of phasing

iterations); and (v) err = 0.00001 (the allele miscall rate).

Determining the imputation accuracy

The WGS SNP data from 1006 of the 1007 resequenced

accessions were used as a reference panel to impute untyped

variants. The remaining line was kept out of the reference panel

(leave-one-out design; Ramnarine et al., 2015) to determine how

accurately data at untyped loci (present in the GmHapMap data

but absent from the low-density genotype catalogue) could be

imputed in this accession. We performed three such permutations

where a single accession (Gm_H083, Gm_H059 and Gm_H586)

was kept aside to estimate imputation accuracy. These three

accessions were randomly selected from a set of accessions for

which both GBS and SNP array data were available. Imputation

accuracy was assessed as the degree of concordance between the

imputed genotypes in the accession that had been left out of the

reference panel and the true genotypes.

Marker–trait association analysis

Sonah et al. (2015) described a set of QTLs from GWA analysis on

a subset of 139 soybean accessions. These accessions were

genotyped via GBS. We imputed untyped variants on this low-

density genotype dataset from GmHapMap in 1 Mb of chromo-

some 14, encompassing a QTL for seed oil content. GWA analysis

was conducted using GAPIT R package (Lipka et al., 2012) using

an MLM model. A candidate gene was identified using SoyBase

database (Grant et al., 2010) and The Arabidopsis Information

Resource (TAIR) [https://www.arabidopsis.org/servlets/TairObjec

t?type=gene&name=AT4G38350.1].

Identification of gene-centric haplotypes

The identification of GCHs was performed using the Haplo-

typeMiner R package (https://github.com/malemay/Haplotype

Miner; Tardivel et al., 2019) with the entire SNP dataset on

55,381 protein-coding genes in the soybean genome. In brief, the

following parameters were used: (i) R2_measure = ’r2s’ (the

estimation of linkage disequilibrium between markers was

measured based on corrected r2vs which takes into account

information related to genetic relatedness and population
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structure); (ii) cluster_R2 = ’r2s’ (LD measure to use in the

clustering step); (iii) max_missing_threshold = 0.05 (the maxi-

mum proportion of missing genotypes allowed for a marker); (iv)

max_het_threshold = 0.01 (the maximum proportion of

heterozygous genotypes allowed for a marker); (v) min_allele_-

count = 4 (the minimum number of times the minor allele has to

be seen for a marker to be retained); (vi) cluster_threshold = 0.9

(the minimum LD beyond which markers were clustered); (vii)

max_flanking_pair_distance = 10 000 (the maximum distance (in

bp) that can separate two markers in LD at the final selection

step); (viii) max_marker_to_gene_distance = 6000 (the maximum

distance (in bp) from a marker to the centre of the gene of

interest); and (ix) marker_independence_threshold = 0.8 (the

minimum LD for two markers to be considered in LD at the final

selection step).

Identification of duplicated genes

We detected putative duplicated genes, presumably derived from

WGD or gene duplication, using protein homology analysis

integrated in the Phytozome (Goodstein et al., 2012) database.

Protein homologs were identified using dual-affine Smith–Water-

man alignments (Smith and Waterman, 1981) between the

predicted translation product of the selected transcript (aka query

gene) and all other predicted proteins in the soybean genome.

We identified duplicated genes with 90% identity (ID ≥ 90), 90%

coverage (CV ≥ 90) and 5% size difference (SD ≤ 5) threshold.

Putative duplicated genes, presumably derived from WGD or

gene duplication, were identified using the soybean reference

genome (Gmax_275) (Wm82.a2; Schmutz et al., 2010) and

protein homology analysis integrated in the Phytozome (Good-

stein et al., 2012) database. We then downloaded the complete

transcriptome dataset for 26 tissues from the Phytozome

database (Goodstein et al., 2012). We extracted transcriptome

datasets for the genes affected by LOF mutations and their

duplicated copies identified in this study. The expression level was

measured for these genes using FPKM (fragments per kilobase of

exon per million fragments mapped) values (Conesa et al., 2016).

As the expression level varied among different tissues, we

declared that a gene was not expressed when its FPKM value

was equal to 0 or below −2σmean = σp
N (defined for each tissue;

Figure S8). In general, we observed three different situations: (i)

both/all gene copies showed a similar expression level in all

tissues; (ii) the gene bearing an LOF mutation and its duplicate(s)

showed a quantitatively different expression level in all tissues;

and (iii) the gene copy with a LOF allele showed a distinct

expression pattern in some tissues. In the latter cases, we expect

that the LOF allele will result in a phenotypic difference that could

be uncovered.
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Figure S1. Frequency distribution of nucleotide variants in the

GmHapMap dataset.

Figure S2. Population structure of GmHapMap accessions. Left, a

scree plot representing the estimated number of subpopulations

based on a principal component analysis (PCA). Right, unrooted

phylogenetic tree of all accessions inferred from whole-genome

SNPs representing existing genetic diversity and admixture among

GmHapMap accessions.

Figure S3. Decay of linkage disequilibrium (LD) in the soybean

genome.

Figure S4. Distribution of SNPs derived from three different

genotyping platforms (whole-genome sequencing (WGS), geno-

typing-by-sequencing (GBS) and SNP array (SoySNP50K)) on

chromosome 3 (Chr03) of soybean.

Figure S5. Distribution of genome-wide SNPs in genic and

intergenic regions of soybean for four different genotype datasets

(soybean haplotype map (GmHapMap), genotyping-by-sequenc-

ing (GBS), SNP array (SoySNP50K) and combined (combination of

GBS and SoySNP50K).

Figure S6. Manhattan plot of a regional association mapping for

seed oil content using imputed data. The significance threshold

was drawn at an FDR-adjusted p-value (or q-value) below 0.01.

Figure S7. Identified GCHs for (a) E1 (a soybean maturity gene)

(Langewisch et al., 2014), (b) E3 (a soybean maturity gene)

(Langewisch et al., 2014), (c) Gmdt1 (a plant architecture gene)

(Langewisch et al., 2014) and (d) GmSNP18 (a key gene

controlling soybean-cyst nematode (SCN) resistance) (Liu et al.,

2017). Left is the name of know allele, and right is the number of

accessions harbouring the haplotype. ND stands for not deter-

mined.

Figure S8. Frequency distribution of LOF alleles.

Figure S9. Schematic representation of expression analysis for

duplicated genes. Three broad situations are illustrated: (a) Both/
all gene copies showed a similar expression level in all tissues; (b)

the gene bearing an LOF mutation and its duplicate(s) show a

quantitatively different expression level in all tissues; and (c) the

gene copy with a LOF allele shows a distinct expression pattern in

some tissues. In the latter cases, we expect that the LOF allele will

result in a phenotypic difference that could be uncovered.
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